Skip to main content
Log in

Analysis of anode functional layer for minimizing thermal stress in solid oxide fuel cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) model is used to analyze the thermo-mechanical behavior of anode-supported solid oxide fuel cell for a given thermal loading. In order to reduce the thermal stress generated during the preparation and operation of solid oxide fuel cell, the optimized anode functional layer is introduced into solid oxide fuel cell. In this work, based on the hierarchical model theory, the anode functional layer is divided into several sub-layers. The thickness and NiO volume fraction of each sub-layer gradient change and are controlled by non-linear thickness gradient exponent and non-linear composition gradient exponent, respectively. The optimization schemes are obtained to minimize the anode axial stress, the electrolyte compressive stress and the layer interface stress significantly, and the change trend of the anode axial stress over the entire temperature range is also analyzed. The research in this paper provides theoretical basis for optimizing the anode-supported solid oxide fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N.Q. Minh, T. Takahashi, Science and technology of ceramic fuel cells (Elsevier, Amsterdam, 1995)

    Google Scholar 

  2. S.C. Singhal, K. Kendall, High temperature solid oxide fuel cells: fundamentals, design and applications. Mater. Today 5(12), 55 (2002)

    Google Scholar 

  3. X. Chen, Z.Z. Lin, C. Yin, H. Tang, Y.C. Hu, X.J. Ning, Theoretical prediction of the growth and surface structure of platinum nanoparticles. Acta Phys. Sin. 61, 076801 (2012)

    Google Scholar 

  4. A. Selçuk, G. Merere, A. Atkinson, The influence of electrodes on the strength of planar zirconia solid oxide fuel cells. J. Mater. Sci. 36(5), 1173–1182 (2001)

    Article  ADS  Google Scholar 

  5. A. Selimovic, M. Kemm, T. Torisson, M. Assadi, Steady state and transient thermal stress analysis in planar solid oxide fuel cells. J. Power Sources 145(2), 463–469 (2005)

    Article  ADS  Google Scholar 

  6. D. Sarantaridis, R.A. Rudkin, A. Atkinson, Oxidation failure modes of anode-supported solid oxide fuel cells. J. Power Sources 180(2), 704–710 (2008)

    Article  ADS  Google Scholar 

  7. F. Erdogan, B.H. Wu, Crack Problems in FGM layers under thermal stresses. J. Therm. Stress. 19(3), 237–265 (1996)

    Article  Google Scholar 

  8. Y.D. Lee, F. Erdogan, Residual/thermal stresses in FGM and laminated thermal barrier coatings. Int. J. Fracture 69(2), 145–165 (1995)

    Article  Google Scholar 

  9. S. Suresh, A. Mortensen, Fundamentals of functionally graded materials (IOM Communications Ltd., London, 1998)

    Google Scholar 

  10. Z.W. Wang, Q. Zhang, L.Z. Xia, J.T. Wu, P.Q. Liu, Stress analysis and parameter optimization of an FGM pressure vessel subjected to thermo-mechanical loadings. Procedia Eng. 130, 374–389 (2015)

    Article  Google Scholar 

  11. T.Z. Jiang, Z.H. Wang, B.Y. Ren, J.S. Qiao, W. Sun, K.N. Sun, Compositionally continuously graded cathode layers of (Ba0.5Sr0.5) (Fe0.91Al0.09) O3−δ-Gd0.1Ce0.9O2 by wet powder spraying technique for solid oxide fuel cells. J. Power Sources 247, 858–864 (2014)

    Article  ADS  Google Scholar 

  12. J. McCoppin, I. Barney, S. Mukhopadhyay, R. Miller, T. Reitz, D. Young, Compositional control of continuously graded anode functional layer. J. Power Sources 215, 160–163 (2012)

    Article  ADS  Google Scholar 

  13. Z.H. Wang, N.Q. Zhang, J.S. Qiao, K.N. Sun, P. Xu, Improved SOFC performance with continuously graded anode functional layer. Electrochem. Commun. 11(6), 1120–1123 (2009)

    Article  Google Scholar 

  14. Y.S. Wang, D. Gross, Analysis of a crack in a functionally gradient interface layer under static and dynamic loading. Key Eng. Mater. 183–187, 331–336 (2000)

    Article  Google Scholar 

  15. Y.S. Wang, G.Y. Huang, D. Gross, On the mechanical modeling of functionally graded interracial zone with a griffith crack: anti-plane deformation. ASME J. Appl. Mech. 70(5), 676–680 (2003). doi:10.1115/1.1598476

    Article  ADS  MATH  Google Scholar 

  16. G.Y. Huang, Y.S. Wang, S.W. Yu, A new multi-layered model for in-plane fracture analysis of functionally graded materials (FGMS). Chin. J. Theor. App. Mech. 37(1), 1–8 (2005)

    Google Scholar 

  17. A.C. Müller, D. Herbstritt, E.I. Tiffée, Development of a multilayer anode for solid oxide fuel cells. Solid State Ion 152–153, 537–542 (2002)

    Article  Google Scholar 

  18. J.R. Kong, K.N. Sun, D.R. Zhou, N.Q. Zhang, J. Mu, J.S. Qiao, Ni-YSZ gradient anodes for anode-supported SOFCs. J. Power Sources 166(2), 337–342 (2007)

    Article  ADS  Google Scholar 

  19. G. Anandakumar, N. Li, A. Verma, P. Singh, J.H. Kim, Thermal stress and probability of failure analyses of functionally graded solid oxide fuel cells. J. Power Sources 195(19), 6659–6670 (2010)

    Article  ADS  Google Scholar 

  20. A. Nakajo, Z. Wuillemin, J.V. Herle, D. Favrat, Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I: probability of failure of the cells. J. Power Sources 193(1), 203–215 (2009)

    Article  ADS  Google Scholar 

  21. R. Clague, A.J. Marquis, N.P. Brandon, Finite element and analytical stress analysis of a solid oxide fuel cell. J. Power Sources 210(15), 224–232 (2012)

    Article  ADS  Google Scholar 

  22. W.C. Jiang, Y. Luo, W.Y. Zhang, W. Woo, S.T. Tu, Effect of temperature fluctuation on creep and failure probability for planar solid oxide fuel cell. ASME J. Fuel Cell Sci. Tech. 12(5), 051004 (2015). doi:10.1115/1.4031697

    Article  Google Scholar 

  23. J.H. Kim, G.H. Paulino, Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. ASME J. Appl. Mech. 69(4), 502–514 (2002). doi:10.1115/1.1467094

    Article  ADS  MATH  Google Scholar 

  24. T. Hirano, K. Wakashima, Mathematical modeling and design. MRS Bull. 20(1), 40–42 (1995)

    Article  Google Scholar 

  25. A.E. Giannakopoulos, S. Suresh, M. Finot, M. Olsson, Elastoplastic analysis of thermal cycling: layered materials with compositional gradients. Acta Metall. Mater. 43(4), 1335–1354 (1995)

    Article  Google Scholar 

  26. R.L. Williamson, B.H. Rabin, J.T. Drake, Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part I. Model description and geometrical effects. J. Appl. Phys. 74(2), 1310–1320 (1993)

    Article  ADS  Google Scholar 

  27. S. Amada, Hierarchical functionally gradient structures of bamboo, barley, and corn. MRS Bull. 20(1), 35–36 (1995)

    Article  Google Scholar 

  28. V. Teixeira, Numerical analysis of the influence of coating porosity and substrate elastic properties on the residual stresses in high temperature graded coatings. Surf. Coat. Tech. 146–147(2), 79–84 (2001)

    Article  Google Scholar 

  29. C.L. Hsieh, W.H. Tuan, Elastic and thermal expansion behavior of two-phase composites. Mat. Sci. Eng. A Struct. 425(1–2), 349–360 (2006)

    Article  Google Scholar 

  30. H. Yakabe, Y. Baba, T. Sakurai, Y. Yoshitaka, Evaluation of the residual stress for anode-supported SOFCs. J. Power Sources 135(1–2), 9–16 (2004)

    Article  ADS  Google Scholar 

  31. P.F. Fan, G.J. Li, Y.K. Zeng, X.W. Zhang, Numerical study on thermal stresses of a planar solid oxide fuel cell. Int. J. Therm. Sci. 77, 1–10 (2014)

    Article  Google Scholar 

  32. W. Fischer, J. Malzbender, G. Blass, R.W. Steinbrech, Residual stresses in planar solid oxide fuel cells. J. Power Sources 150, 73–77 (2005)

    Article  ADS  Google Scholar 

  33. N. Bamba, Y.H. Choa, K. Niihara, Fabrication and mechanical properties of nanosized SiC particulate reinforced yttria stabilized zirconia composites. Nanostruct. Mater. 9(1–8), 497–500 (1997)

    Article  Google Scholar 

  34. A. Atkinson, A. Selcuk, Mechanical behaviour of ceramic oxygen ion-conducting membranes. Solid State Ion. 134, 59–66 (2000)

    Article  Google Scholar 

  35. J.R. Cho, D.Y. Ha, Volume fraction optimization for minimizing thermal stress in Ni-Al2O3 functionally graded materials. Mat. Sci. Eng. A Struct. 334(1–2), 147–155 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant numbers 11572253, 11372251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Hao, W. & Wang, F. Analysis of anode functional layer for minimizing thermal stress in solid oxide fuel cell. Appl. Phys. A 123, 656 (2017). https://doi.org/10.1007/s00339-017-1266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1266-x

Navigation