Skip to main content
Log in

Transport properties of MnTe films with cracks produced in thermal cycling process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

As a promising material in antiferromagnetic spintronics, MnTe films manifested complex characteristics according to previous reports. In this work, we investigate in details the temperature dependence of resistivity of MnTe films grown on SiO2/Si substrate and focus on the divaricating of cooling and warming resistivity-temperature (R-T) curves. It is found that such a divaricating in resistivity is associated with cracks produced in thermal cycles. By comparing the crystalline character and the morphology before and after the cycles, we verify the appearance of cracks and the release of stress in the films. Based on the temperature dependence of thermal-expansion coefficient of Si and MnTe, the origin of the cracks is the mismatched thermal-expansion coefficient (α). The humps, which only appear in the R-T curve of the first cooling process, are attributed to the produced cracks and/or the unreleased stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Szuszkiewicz, E. Dynowska, B. Witkowska, B. Hennion, Spin-wave measurements on hexagonal MnTe of NiAs-type structure by inelastic neutron scattering. Phys. Rev. B 73, 104403 (2006)

    Article  ADS  Google Scholar 

  2. K.K. Kelley, The specific heats at low temperatures of manganese, manganous selenide, and manganous telluride. J. Am. Chem. Soc. 61, 203–207 (1939)

    Article  Google Scholar 

  3. C.F. Squire, Antiferromagnetism in Some Manganous Compounds. Phys. Rev. 56, 922–925 (1939)

    Article  ADS  MATH  Google Scholar 

  4. T. Komatsubara, M. Murakami, E. Hirahara, Magnetic Properties of Manganese Telluride Single Crystals. J. Phys. Soc. Jpn. 18, 356–364 (1963)

    Article  ADS  Google Scholar 

  5. S.-H. Wei, A. Zunger, Total-energy and band-structure calculations for the semimagnetic Cd1-xMnxTe semiconductor alloy and its binary constituents. Phys. Rev. B 35, 2340–2365 (1987)

    Article  ADS  Google Scholar 

  6. J.B.C. Efrem D’Sa, P.A. Bhobe, K.R. Priolkar, A. Das, S.K. Paranjpe, R.B. Prabhu, P.R. Sarode, Low-temperature neutron diffraction study of MnTe. J. Magn. Magn. Mater. 285, 267–271 (2005)

    Article  ADS  Google Scholar 

  7. M. Podgorny, J. Oleszkiewicz, Electronic structure of antiferromagnetic MnTe. J. Phys. C Solid State Phys. 16, 2547–2557 (1983)

    Article  ADS  Google Scholar 

  8. J. Spalek, A. Lewicki, Z. Tarnawski, J.K. Furdyna, R.R. Galazka, Z. Obuszko, Magnetic susceptibility of semimagnetic semiconductors: the high-temperature regime and the role of superexchange. Phys. Rev. B 33, 3407–3418 (1986)

    Article  ADS  Google Scholar 

  9. R.T. Lechner, G. Springholz, M. Hassan, H. Groiss, R. Kirchschlager, J. Stangl, N. Hrauda, G. Bauer, Phase separation and exchange biasing in the ferromagnetic IV–VI semiconductor Ge 1−x Mn x Te. Appl. Phys. Lett 97, 023101 (2010)

    Article  ADS  Google Scholar 

  10. Y.B. Li, Y.Q. Zhang, N.K. Sun, Q. Zhang, D. Li, J. Li, Z.D. Zhang, Ferromagnetic semiconducting behavior of Mn1 Ferromagnetic semiconducting behavior of Mn 1-x Cr x Te compounds. Phys. Rev. B 72, 193308 (2005)

    Article  ADS  Google Scholar 

  11. D. Kriegner, K. Vyborny, K. Olejnik, H. Reichlova, V. Novak, X. Marti, J. Gazquez, V. Saidl, P. Nemec, V.V. Volobuev, G. Springholz, V. Holy, T. Jungwirth, Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016)

    Article  ADS  Google Scholar 

  12. Y. Magnin, H.T. Diep, Monte Carlo study of magnetic resistivity in semiconducting MnTe. Phys. Rev. B 85, 184413 (2012)

    Article  ADS  Google Scholar 

  13. Z.H. Wang, D.Y. Geng, J. Li, Y.B. Li, Z.D. Zhang, Magnetic and Transport Properties of Mn0.98Cr0.02Te Epitaxial Films Grown on Al2O3 Substrates. J. Mater. Sci. Technol. 30, 103–106 (2014)

    Article  Google Scholar 

  14. D. Newmen, Semiconductor Physics and Devices: Basic Principles, 3rd edn. (McGraw-Hill Companies, New York, 2013)

    Google Scholar 

  15. W. Kim, I.J. Park, H.J. Kim, W. Lee, S.J. Kim, C.S. Kim, Room-temperature ferromagnetic property in MnTe semiconductor thin film grown by molecular beam epitaxy. IEEE Trans Magn. 45, 2424–2427 (2009)

    Article  ADS  Google Scholar 

  16. Z.H. Wang, D.Y. Geng, W.J. Gong, J. Li, Y.B. Li, Z.D. Zhang, Effect of adding Cr on magnetic properties and metallic behavior in MnTe film. Thin Solid Films 522, 175–179 (2012)

    Article  ADS  Google Scholar 

  17. L. Yang, Z.H. Wang, Z.D. Zhang, Electrical properties of NiAs-type MnTe films with preferred crystallographic plane of (110). J. Appl. Phys. 119, 045304 (2016)

    Article  ADS  Google Scholar 

  18. W.S. Kim, E.O. Chi, J.C. Kim, N.H. Hur, K.W. Lee, Y.N. Choi, Cracks induced by magnetic ordering in the antiperovskite ZnNMn 3. Phys. Rev. B 68, 172402 (2003)

    Article  ADS  Google Scholar 

  19. N.K. Sun, Y.B. Li, D. Li, Q. Zhang, W.J. Feng, Z.D. Zhang, Anomalous positive magnetoresistance inFe 0.75 Mn 1.35 As. Phys. Rev. B 74, 172402 (2006)

    Article  ADS  Google Scholar 

  20. H. Huhtinen, H. Palonen, P. Paturi, The growth rate and temperature induced microcracks in YBCO films pulsed laser deposited on MgO substrates. IEEE T. Appl. Supercond. 23, 7200104 (2013)

    Article  Google Scholar 

  21. Y. Yasuji, K. Junichi, W. Jian-Guo, N. Yusuke, H. Izumi, Evaluation of thermal expansion coefficient of twinned YBa2Cu3O7-δ film for prediction of crack formation on various substrates. Jpn. J. Appl. Phys. 39, 1111–1115 (2000)

    Article  ADS  Google Scholar 

  22. J. Kawashima, Y. Yamada, I. Hirabayashi, Critical thickness and effective thermal expansion coefficient of YBCO crystalline film. Physica C Supercond. 306, 114–118 (1998)

    Article  ADS  Google Scholar 

  23. J.D. Wasscher, C. Haas, Contribution of magnon-drag to the thermoelectric power of antiferromagnetic MnTe. Phys. Lett. 8, 302–304 (1964)

    Article  ADS  Google Scholar 

  24. H. Ibach, Thermal expansion of silicon and zinc oxide (I). Phys. Status Solidi (B) 31, 625–634 (1969)

    Article  ADS  Google Scholar 

  25. R. Minikayev, E. Dynowska, B. Witkowska, A.M.T. Bell, W. Szuszkiewicz, Unit-cell dimensions of α-MnTe in the 295–1200 K temperature range. X-Ray Spectrom. 44, 394–397 (2015)

    Article  ADS  Google Scholar 

  26. W. Szuszkiewicz, B. Hennion, B. Witkowska, E. Łusakowska, A. Mycielski, Neutron scattering study of structural and magnetic properties of hexagonal MnTe. Phys. Status Solidi (C) 2, 1141–1146 (2005)

    Article  ADS  Google Scholar 

  27. S. Biernacki, M. Scheffler, The influence of the isotopic composition on the thermal-expansion of crystalline Si. J. Phys. condens. Matter 6, 4879–4884 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China with Grant No. 51522104 and 51331006. This work was supported by the National Key R&D Program of China with Grant No. 2017YFA0206302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wang, Z. & Zhang, Z. Transport properties of MnTe films with cracks produced in thermal cycling process. Appl. Phys. A 123, 650 (2017). https://doi.org/10.1007/s00339-017-1264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1264-z

Navigation