Skip to main content
Log in

Transmissive focusing meta-surface with nearly 100% efficiency

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Planar lens is one of the most important components of both microwave and optical frequency regimes. However, current available transmissive lenses are limited by their low efficiency, complex configurations and large sizes. Here, we propose a general strategy to design focusing meta-surface by using carefully designed Huygens elements. Each element on the meta-surface can realize very high transmission due to the electric and magnetic currents deduced by electric and magnetic structures, respectively. As proof of the concept, a meta-lens, working at frequency of 10 GHz is designed, fabricated and measured. Our meta-lens consists of 31 × 25 Huygens elements, occupying a total area of 155 × 164.3 mm2. Numerical and experimental results agree well with each other. The measured absolute efficiency of our meta-lens is higher than 86.7% (90.6% for simulation) at the working frequency. Moreover, the bandwidth is about 30.7% (32.5% for simulation). Our finding opens up a new avenue to design high-performance microwave meta-devices working in transmission geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.F. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–338 (2011)

    Article  ADS  Google Scholar 

  2. X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2013)

    Article  ADS  Google Scholar 

  3. C. Pfeiffer, A. Grbic, Metamaterial Huygens’ surface: tailoring wave fronts with reflectionless sheet. Phys. Rev. Lett. 110, 197401 (2013)

    Article  ADS  Google Scholar 

  4. M. Decker, I. Staude et al., High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3(6), 813–820 (2015)

    Article  Google Scholar 

  5. S.L. Jia, X. Wan, X.J. Fu, Y.J. Zhao, T.J. Cui, Low-reflection beam refractions by ultrathin Huygens metasurface. AIP Adv. 5(6), 067102 (2015)

    Article  ADS  Google Scholar 

  6. H.X. Xu, G.M. Wang, T. Cai, J. Xiao, Y.Q. Zhuang, Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection. Opt. Express 24, 27836–27848 (2016)

    Article  ADS  Google Scholar 

  7. J.P. Wong, M. Selvanayagam, G.V. Eleftheriades, Polarization considerations for scalar Huygens metasurfaces and characterization for 2-D refraction, IEEE Trans. Microw. Theor. Techn. 63, 913–924 (2015)

    Article  Google Scholar 

  8. C. Pfeiffer, N.K. Emani, A.M. Shaltout, A. Boltasseva, V.M. Shalaev, A. Grbic, Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett. 14, 2491–2497 (2014)

    Article  ADS  Google Scholar 

  9. A. Pors, O. Albrektsen, I.P. Radko, S.I. Bozhevolnyi, Gap plasmon-based metasurfaces for total control of reflected light. Sci. Rep. 3, 2155 (2013)

    Article  ADS  Google Scholar 

  10. H.F. Ma, G.Z. Wang, G.S. Kong, T.J. Cui, Independent Controls of differently-polarized reflected waves by anisotropic metasurfaces. Sci. Rep. 5, 9605 (2015)

    Article  ADS  Google Scholar 

  11. M.F. Farahani, H. Mosallaei, Birefringent reflectarray metasurface for beam engineering in infrared. Opt. Lett. 38, 462–464 (2013)

    Article  ADS  Google Scholar 

  12. S.L. Sun, Q. He, S.Y. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012)

    Article  ADS  Google Scholar 

  13. W. Sun, Q. He, S. Sun, L. Zhou, High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci. Appl. 5, e16003 (2016)

    Article  Google Scholar 

  14. X. Wan, Y.B. Li, B.G. Cai, T.J. Cui et al., Simultaneous controls of surface waves and propagating waves by metasurfaces. Appl. Phys. Lett. 105, 121603 (2014)

    Article  ADS  Google Scholar 

  15. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, Y. Shi, Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain. Appl. Phys. Lett. 108, 121903 (2016)

    Article  ADS  Google Scholar 

  16. S. Yu, L. Li, G. Shi, C. Zhu, Y. Shi, Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett. 108, 241901 (2016)

    Article  ADS  Google Scholar 

  17. Y.W. Huang, W.T. Chen, W.Y. Tsai, P.C. Wu, C.M. Wang, G. Sun, D.P. Tsai, Aluminum Plasmonic Multicolor Meta-Hologram. Nano Lett. 15, 3122–3127 (2015)

    Article  ADS  Google Scholar 

  18. L. Huang, X. Chen, H.M. Hlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.W. Cheah, C.W. Qiu, J. Li, T. Zentgraf, S. Zhang, Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013)

    Google Scholar 

  19. W.T. Chen, K.Y. Yang, C.M. Wang, Y.W. Huang, G. Sun, I. Chiang, C.Y. Liao, W.L. Hsu, H.T. Lin, S. Sun, L. Zhou, A.Q. Liu, D.P. Tsai, High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225–230 (2014)

    Article  ADS  Google Scholar 

  20. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K.F. Li, P.W.H. Wong, K.W. Cheah, E.Y.B. Pun, S. Zhang, X. Chen, Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015)

    Article  Google Scholar 

  21. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang, Metasurface holograms reaching 80% efficiency. Nat. Nanothchnol. 10, 296–298 (2015)

    Article  Google Scholar 

  22. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  23. X. Li, S. Xiao, B. Cai, Q. He, T.J. Cui, L. Zhou, Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt. Lett. 37, 4940–4942 (2012)

    Article  ADS  Google Scholar 

  24. X. Wan, X. Shen, Y. Luo, T.J. Cui, Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface. Laser Photonics Rev. 8, 757–765 (2014)

    Article  Google Scholar 

  25. T. Cai, S.W. Tang, G.M. Wang, H.X. Xu, S.L. Sun, Q. He, L. Zhou, High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv. Optical Mater. 5, 1600506 (2017)

    Article  Google Scholar 

  26. P. Wang, N. Mohammad, R. Menon, Chromatic-aberration-corrected diffractive lenses for ultrabroadband focusing. Sci. Rep. 6, 21545 (2016)

    Article  ADS  Google Scholar 

  27. A. Arbabi, Y. Horie, M. Bagheri et al., Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanothchnol. 10, 937–943 (2015)

    Article  ADS  Google Scholar 

  28. T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials. Light 3, e218 (2014)

    Article  Google Scholar 

  29. K. Chen, Y.J. Feng, F. Monticone et al., A reconfigurable active Huygens’ Metalens. Adv. Mater. 29, 1606422 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 61372034, Natural Science Foundation of Shaanxi province No. 2016JM6063. The authors would like to thank the China North Electronic Engineering Research Institute for the fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, BC., Wang, GM. & Cai, T. Transmissive focusing meta-surface with nearly 100% efficiency. Appl. Phys. A 123, 630 (2017). https://doi.org/10.1007/s00339-017-1254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1254-1

Navigation