Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes

  • 425 Accesses

  • 9 Citations

Abstract

In this study, Ag/nano-TiO2 composites were prepared and introduced into a compact film of perovskite solar cells. A new method was used to create a compact precursor solution consisting of a mixture of ethanol, titanium diisopropoxide bis, and silver nitrate. The Ag/nano-TiO2 composite compact film was formed by spin-coating a compact precursor solution on a fluorine-doped tin-oxide substrate after annealing at 500 °C for 30 min. The Ag/nano-TiO2 composites were observed with a transmission electron microscope. The perovskite solar cells with different contents of the Ag/nano-TiO2 composite compact film were entirely fabricated in ambient air and based on carbon counter electrodes with diverse power conversion efficiency. The addition of Ag to the nano-TiO2 strengthened the optical absorption of the perovskite solar cells in the visible light region and enhanced the efficiency of electron injection in the perovskite solar cell; this result was mainly ascribed to the strong scattering effect and the surface plasmon resonance effect of the metallic Ag nanoparticles in the Ag/nano-TiO2 composite compact film. Because of the enhancement of electron injection, a small content of Ag/nano-TiO2 composite compact film improved the performance of the perovskite solar cell. Moreover, a perovskite solar cell with 1.5% Ag/nano-TiO2 composite compact film possessed the highest power conversion efficiency (η = 8.96%) and short-circuit photocurrent density (J sc) (=20.42 mA cm−2), resulting in a 30% enhancement in power conversion efficiency and a 23% enhancement in J sc when compared to the pristine TiO2 perovskite solar cell.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013)

  2. 2.

    H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013)

  3. 3.

    H.S. Kim, H.I. Sang, N.G. Park, J. Phys. Chem. C 118, 5615 (2014)

  4. 4.

    S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chem. 45, 2812 (2014)

  5. 5.

    Q. Chen, N.D. Marco, Y. Yang, T.B. Song, C.C. Chen, H.X. Zhao, Z.R. Hong, H.P. Zhou, Nano Today 10, 355 (2015)

  6. 6.

    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

  7. 7.

    H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542 (2014)

  8. 8.

    W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Science 365, 1376 (2017)

  9. 9.

    A. Yella, L.P. Heiniger, P. Gao, M.K. Nazeeruddin, Nano Lett. 14, 2591 (2014)

  10. 10.

    H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Sci. Rep. 2, 591 (2012)

  11. 11.

    S. Aharon, S. Gamliel, C.B. El, L. Etgar, Phys. Chem. Chem. Phys. 16, 10512 (2014)

  12. 12.

    H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Energy Environ. Sci. 6, 1185 (2013)

  13. 13.

    P. Docampo, A. Hey, S. Guldin, R. Gunning, U. Steiner, H.J. Snaith, Adv. Funct. Mater. 22, 5010 (2012)

  14. 14.

    M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)

  15. 15.

    X. Li, D.Q. Bi, C.Y. Yi, J.D. Decoppet, J.S. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 353, 6294 (2016)

  16. 16.

    N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S.C. Ryu, J.W. Seo, S.I. Seok, Nature 517, 7535 (2015)

  17. 17.

    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)

  18. 18.

    D. Liu, T.L. Kelly, Nat. Photonics 8, 133 (2014)

  19. 19.

    X. Liu, K.W. Tsai, Z.L. Zhu, Y. Sun, C.C. Chueh, K.Y. Jen, Adv. Mater. Interfaces 3, 1600881 (2016)

  20. 20.

    J.Y. Yue, Y.M. Xiao, Y.P. Li, G.Y. Han, Y. Zhang, W.J. Hou, Org. Electron. 43, 121 (2017)

  21. 21.

    W. Yang, Y. Yao, C.Q. Wu, J. Appl. Phys. 117, 317 (2015)

  22. 22.

    N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013)

  23. 23.

    B. Conings, L. Baeten, C.D. Dobbelaere, J.D. Hean, J. Manca, H.G. Boyen, Adv. Mater. 26, 2041 (2014)

  24. 24.

    Y.Z. Wu, X.D. Yang, H. Chen, K. Zhang, C.J. Qin, J. Liu, W.Q. Peng, A. Islam, E. Bi, F. Ye, M.S. Yin, P. Zhang, Appl. Phys. Exp. 7, 052301 (2014)

  25. 25.

    X.B. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

  26. 26.

    J.W. Liu, J. Zhang, G.Q. Yue, X.W. Lu, Z.Y. Hu, Y.J. Zhu, Electrochim. Acta 195, 143 (2016)

  27. 27.

    B.X. Chen, H.S. Rao, W.G. Li, Y.F. Xu, H.Y. Chen, D.B. Kuang, C.Y. Su, J. Mater. Chem. A 4, 5647 (2016)

  28. 28.

    A. Baktash, O. Amiri, A. Sasani, Superlattices Microstruct. 93, 128 (2016)

  29. 29.

    Y. Li, Y. Guo, Y. Li, X. Zhou, Electrochim. Acta 200, 29 (2016)

  30. 30.

    J.T. Wang, J.M. Ball, E.M. Berea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Nano Lett. 14, 724 (2014)

  31. 31.

    Y. Xiong, Y.J. Guo, Z.S. Xue, P. Xu, M. He, B. Liu, Nano Res. 8, 1997 (2015)

  32. 32.

    H.Y. Zhang, J.J. Shi, X. Xu, L.F. Zhu, Y.H. Luo, D.M. Li, Q.B. Meng, J. Mater. Chem. A 4, 40 (2016)

  33. 33.

    D. Yang, J.G. Jang, J. Lim, J.K. Lee, S.H. Kim, J.I. Hong, ACS Appl. Mater. Interfaces 8, 33 (2016)

  34. 34.

    Y. Liu, F. Lang, T. Dittrich, A. Steigert, C.H. Fischer, T. Köhler, P. Plate, J. Rappich, MCh. Lux-Steiner, M. Schmid, RSC Adv. 7, 3 (2017)

  35. 35.

    Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, Sci. Rep. 3, 2112 (2013)

  36. 36.

    J.H. Hu, J.J. Cheng, S.Q. Tong, Y.P. Yang, M.W. Chen, S.W. Hu, Int. J. Photoenergy 2016, 1 (2016)

  37. 37.

    Y.G. Rong, Z.L. Ku, A.Y. Mei, T.F. Liu, M. Xu, S. Ko, X. Li, H.W. Han, J. Phys. Chem. Lett. 5, 2160 (2014)

  38. 38.

    N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, J. Am. Chem. Soc. 137, 8696 (2015)

  39. 39.

    M. Jin, X.T. Zhang, S. Nishimoto, Z.Y. Liu, D.A. Tryk, A.V.A. Meline, T. Murakami, A. Fujishima, J. Phys. Chem. C 111, 658 (2007)

  40. 40.

    H. Li, X. Duan, G. Liu, X. Liu, J. Mater. Sci. 43, 1669 (2008)

  41. 41.

    K. Luo, T.P.S. Clair, X. Lai, D.W. Goodman, J. Phys. Chem. B 104, 1374 (2000)

  42. 42.

    Y. Xu, H. Zhang, X. Li, W. Wang, J. Li, J. Alloy. Compd. 695, 1104 (2017)

  43. 43.

    X. Wang, J.C. Yu, C. Ho, A.C. Mak, Chem. Commun. 17, 2262 (2005)

  44. 44.

    H. Dong, Z. Wu, A. Elshafei, B. Xia, J. Xi, J. Bo, S.Y. Ning, X. Hou, J. Mater. Chem. A 3, 4659 (2015)

  45. 45.

    J. He, I. Ichinose, S. Fujikawa, T. Kunitake, A. Nakao, Chem. Commun. 8, 1910 (2002)

  46. 46.

    D.W. Brandl, P. Nordlander, J. Chem. Phys. 126, 1 (2007)

  47. 47.

    K. Kawahara, K. Suzuki, Y. Ohko, T. Tatsuma, Phys. Chem. Chem. Phys. 7, 3851 (2005)

  48. 48.

    K. Matsubara, T. Tatsuma, Adv. Mater. 19, 2802 (2010)

  49. 49.

    J. Li, J. Xu, W.L. Dai, K. Fan, J. Phys. Chem. C 113, 8343 (2009)

  50. 50.

    Q. Xiang, J. Yu, B. Cheng, H.C. Ong, Chem-Asian J. 5, 1466 (2010)

  51. 51.

    C. Su, L. Liu, M. Zhang, Y. Zhang, C. Shao, CrystEngComm 14, 3989 (2012)

  52. 52.

    B. Xin, L. Jing, Z. Ren, B. Wang, H. Fu, J. Phys. Chem. B 109, 2805 (2005)

Download references

Acknowledgements

National Natural Science Foundation of China (NSFC) (11704293 and 51572072), Fundamental Research Funds for the Central Universities under Grant WUT (2017IB017, 2017IB018), and The Excellent Dissertation Cultivation Funds of Wuhan University of Technology (2016-YS-084). The authors thank Dr. H.F. Lv for his helpful discussion. The authors are also grateful to S. L. Zhao in Material Research and Testing Center of WHUT for her help with SEM.

Author information

Correspondence to Yingping Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, S., Hu, J., Yang, Y. et al. Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes. Appl. Phys. A 123, 628 (2017). https://doi.org/10.1007/s00339-017-1240-7

Download citation