Skip to main content

Advertisement

Log in

Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, Ag/nano-TiO2 composites were prepared and introduced into a compact film of perovskite solar cells. A new method was used to create a compact precursor solution consisting of a mixture of ethanol, titanium diisopropoxide bis, and silver nitrate. The Ag/nano-TiO2 composite compact film was formed by spin-coating a compact precursor solution on a fluorine-doped tin-oxide substrate after annealing at 500 °C for 30 min. The Ag/nano-TiO2 composites were observed with a transmission electron microscope. The perovskite solar cells with different contents of the Ag/nano-TiO2 composite compact film were entirely fabricated in ambient air and based on carbon counter electrodes with diverse power conversion efficiency. The addition of Ag to the nano-TiO2 strengthened the optical absorption of the perovskite solar cells in the visible light region and enhanced the efficiency of electron injection in the perovskite solar cell; this result was mainly ascribed to the strong scattering effect and the surface plasmon resonance effect of the metallic Ag nanoparticles in the Ag/nano-TiO2 composite compact film. Because of the enhancement of electron injection, a small content of Ag/nano-TiO2 composite compact film improved the performance of the perovskite solar cell. Moreover, a perovskite solar cell with 1.5% Ag/nano-TiO2 composite compact film possessed the highest power conversion efficiency (η = 8.96%) and short-circuit photocurrent density (J sc) (=20.42 mA cm−2), resulting in a 30% enhancement in power conversion efficiency and a 23% enhancement in J sc when compared to the pristine TiO2 perovskite solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013)

    Article  Google Scholar 

  2. H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013)

    Article  Google Scholar 

  3. H.S. Kim, H.I. Sang, N.G. Park, J. Phys. Chem. C 118, 5615 (2014)

    Article  Google Scholar 

  4. S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chem. 45, 2812 (2014)

    Article  Google Scholar 

  5. Q. Chen, N.D. Marco, Y. Yang, T.B. Song, C.C. Chen, H.X. Zhao, Z.R. Hong, H.P. Zhou, Nano Today 10, 355 (2015)

    Article  Google Scholar 

  6. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  7. H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542 (2014)

    Article  ADS  Google Scholar 

  8. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Science 365, 1376 (2017)

    Article  ADS  Google Scholar 

  9. A. Yella, L.P. Heiniger, P. Gao, M.K. Nazeeruddin, Nano Lett. 14, 2591 (2014)

    Article  ADS  Google Scholar 

  10. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  11. S. Aharon, S. Gamliel, C.B. El, L. Etgar, Phys. Chem. Chem. Phys. 16, 10512 (2014)

    Article  Google Scholar 

  12. H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Energy Environ. Sci. 6, 1185 (2013)

    Article  Google Scholar 

  13. P. Docampo, A. Hey, S. Guldin, R. Gunning, U. Steiner, H.J. Snaith, Adv. Funct. Mater. 22, 5010 (2012)

    Article  Google Scholar 

  14. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)

    Article  ADS  Google Scholar 

  15. X. Li, D.Q. Bi, C.Y. Yi, J.D. Decoppet, J.S. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 353, 6294 (2016)

    Article  Google Scholar 

  16. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S.C. Ryu, J.W. Seo, S.I. Seok, Nature 517, 7535 (2015)

    Article  Google Scholar 

  17. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)

    Article  ADS  Google Scholar 

  18. D. Liu, T.L. Kelly, Nat. Photonics 8, 133 (2014)

    Article  ADS  Google Scholar 

  19. X. Liu, K.W. Tsai, Z.L. Zhu, Y. Sun, C.C. Chueh, K.Y. Jen, Adv. Mater. Interfaces 3, 1600881 (2016)

    Article  Google Scholar 

  20. J.Y. Yue, Y.M. Xiao, Y.P. Li, G.Y. Han, Y. Zhang, W.J. Hou, Org. Electron. 43, 121 (2017)

    Article  ADS  Google Scholar 

  21. W. Yang, Y. Yao, C.Q. Wu, J. Appl. Phys. 117, 317 (2015)

    Google Scholar 

  22. N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013)

    Article  Google Scholar 

  23. B. Conings, L. Baeten, C.D. Dobbelaere, J.D. Hean, J. Manca, H.G. Boyen, Adv. Mater. 26, 2041 (2014)

    Article  Google Scholar 

  24. Y.Z. Wu, X.D. Yang, H. Chen, K. Zhang, C.J. Qin, J. Liu, W.Q. Peng, A. Islam, E. Bi, F. Ye, M.S. Yin, P. Zhang, Appl. Phys. Exp. 7, 052301 (2014)

    Article  ADS  Google Scholar 

  25. X.B. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  26. J.W. Liu, J. Zhang, G.Q. Yue, X.W. Lu, Z.Y. Hu, Y.J. Zhu, Electrochim. Acta 195, 143 (2016)

    Article  Google Scholar 

  27. B.X. Chen, H.S. Rao, W.G. Li, Y.F. Xu, H.Y. Chen, D.B. Kuang, C.Y. Su, J. Mater. Chem. A 4, 5647 (2016)

    Article  Google Scholar 

  28. A. Baktash, O. Amiri, A. Sasani, Superlattices Microstruct. 93, 128 (2016)

    Article  ADS  Google Scholar 

  29. Y. Li, Y. Guo, Y. Li, X. Zhou, Electrochim. Acta 200, 29 (2016)

    Article  ADS  Google Scholar 

  30. J.T. Wang, J.M. Ball, E.M. Berea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicholas, Nano Lett. 14, 724 (2014)

    Article  ADS  Google Scholar 

  31. Y. Xiong, Y.J. Guo, Z.S. Xue, P. Xu, M. He, B. Liu, Nano Res. 8, 1997 (2015)

    Article  Google Scholar 

  32. H.Y. Zhang, J.J. Shi, X. Xu, L.F. Zhu, Y.H. Luo, D.M. Li, Q.B. Meng, J. Mater. Chem. A 4, 40 (2016)

    Google Scholar 

  33. D. Yang, J.G. Jang, J. Lim, J.K. Lee, S.H. Kim, J.I. Hong, ACS Appl. Mater. Interfaces 8, 33 (2016)

    Google Scholar 

  34. Y. Liu, F. Lang, T. Dittrich, A. Steigert, C.H. Fischer, T. Köhler, P. Plate, J. Rappich, MCh. Lux-Steiner, M. Schmid, RSC Adv. 7, 3 (2017)

    Google Scholar 

  35. Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, Sci. Rep. 3, 2112 (2013)

    Article  ADS  Google Scholar 

  36. J.H. Hu, J.J. Cheng, S.Q. Tong, Y.P. Yang, M.W. Chen, S.W. Hu, Int. J. Photoenergy 2016, 1 (2016)

    Google Scholar 

  37. Y.G. Rong, Z.L. Ku, A.Y. Mei, T.F. Liu, M. Xu, S. Ko, X. Li, H.W. Han, J. Phys. Chem. Lett. 5, 2160 (2014)

    Article  Google Scholar 

  38. N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, J. Am. Chem. Soc. 137, 8696 (2015)

    Article  Google Scholar 

  39. M. Jin, X.T. Zhang, S. Nishimoto, Z.Y. Liu, D.A. Tryk, A.V.A. Meline, T. Murakami, A. Fujishima, J. Phys. Chem. C 111, 658 (2007)

    Article  Google Scholar 

  40. H. Li, X. Duan, G. Liu, X. Liu, J. Mater. Sci. 43, 1669 (2008)

    Article  ADS  Google Scholar 

  41. K. Luo, T.P.S. Clair, X. Lai, D.W. Goodman, J. Phys. Chem. B 104, 1374 (2000)

    Google Scholar 

  42. Y. Xu, H. Zhang, X. Li, W. Wang, J. Li, J. Alloy. Compd. 695, 1104 (2017)

    Article  Google Scholar 

  43. X. Wang, J.C. Yu, C. Ho, A.C. Mak, Chem. Commun. 17, 2262 (2005)

    Article  Google Scholar 

  44. H. Dong, Z. Wu, A. Elshafei, B. Xia, J. Xi, J. Bo, S.Y. Ning, X. Hou, J. Mater. Chem. A 3, 4659 (2015)

    Article  Google Scholar 

  45. J. He, I. Ichinose, S. Fujikawa, T. Kunitake, A. Nakao, Chem. Commun. 8, 1910 (2002)

    Article  Google Scholar 

  46. D.W. Brandl, P. Nordlander, J. Chem. Phys. 126, 1 (2007)

    Article  Google Scholar 

  47. K. Kawahara, K. Suzuki, Y. Ohko, T. Tatsuma, Phys. Chem. Chem. Phys. 7, 3851 (2005)

    Article  Google Scholar 

  48. K. Matsubara, T. Tatsuma, Adv. Mater. 19, 2802 (2010)

    Article  Google Scholar 

  49. J. Li, J. Xu, W.L. Dai, K. Fan, J. Phys. Chem. C 113, 8343 (2009)

    Article  Google Scholar 

  50. Q. Xiang, J. Yu, B. Cheng, H.C. Ong, Chem-Asian J. 5, 1466 (2010)

    Google Scholar 

  51. C. Su, L. Liu, M. Zhang, Y. Zhang, C. Shao, CrystEngComm 14, 3989 (2012)

    Article  Google Scholar 

  52. B. Xin, L. Jing, Z. Ren, B. Wang, H. Fu, J. Phys. Chem. B 109, 2805 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (NSFC) (11704293 and 51572072), Fundamental Research Funds for the Central Universities under Grant WUT (2017IB017, 2017IB018), and The Excellent Dissertation Cultivation Funds of Wuhan University of Technology (2016-YS-084). The authors thank Dr. H.F. Lv for his helpful discussion. The authors are also grateful to S. L. Zhao in Material Research and Testing Center of WHUT for her help with SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingping Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Hu, J., Yang, Y. et al. Ag/nano-TiO2 composite compact film for enhanced performance of perovskite solar cells based on carbon counter electrodes. Appl. Phys. A 123, 628 (2017). https://doi.org/10.1007/s00339-017-1240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1240-7

Navigation