Skip to main content

Advertisement

Log in

Fabrication of NiO quantum dot-modified ZnO nanorod arrays for efficient photoelectrochemical water splitting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

NiO quantum dot (QD)-modified ZnO nanorod arrays with enhanced photoelectrochemical activity under simulated sunlight were prepared via hydrothermal and drop-drying methods. The results show an obviously decreases in the PL emission intensity and UV-to-Visible emission ratio in NiO QD-modified ZnO, indicating that the recombination of the photogenerated charge carrier is greatly inhibited in the heterojunction. Photocurrent density of the QD-modified nanorod photoanode reaches four times higher than its dark current density; the difference between the photo and dark current densities of QD-modified nanorod electrode is nearly two times higher than that of nanorod electrode. NiO QD-modified ZnO nanorods exhibit excellent photoelectrocatalytic activity owing to their large specific surface area and high separation efficiency of photogenerated electron–hole pairs. This study provides a promising strategy for fabricating highly efficient photoanodes for water splitting by configuring a QD-composed p–n junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  2. R. Lv, T. Wang, F.L. Su, P. Zhang, C.J. Li, J.L. Gong, Nano Energy 7, 143 (2014)

    Article  Google Scholar 

  3. Z.M. Zhang, C.T. Gao, Z.M. Wu, W.H. Han, Y.L. Wang, W.B. Fu, X.D. Li, E.Q. Xie, Nano Energy 19, 318 (2016)

    Article  ADS  Google Scholar 

  4. P. Luan, M.Z. Xie, X.D. Fu, Y. Qu, X.J. Sun, L.Q. Jing, Phys. Chem. Chem. Phys. 17(7), 5043 (2015)

    Article  Google Scholar 

  5. H.B. Ali, N. Ismail, A. Hegazy, M.H. Mekewi, Electrochem. Acta 150, 314 (2014)

    Article  Google Scholar 

  6. Y.C. Qiu, K.Y. Yan, H. Deng, S.H. Yang, Nano Lett. 12(1), 407 (2011)

    Article  ADS  Google Scholar 

  7. Y.K. Mishra, V.S.K. Chakravadhanula, V. Hrkac, S. Jebril, D.C. Agarwal, S. Mohapatra, D.K. Avasthi, L. Kienle, R. Adelung, J. Appl. Phys. 112(6), 064308 (2012)

    Article  ADS  Google Scholar 

  8. Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, F. Stefan, C. Maria, S. Wille, K. Alexander, S.N. Gorb, R. Adelung, Part. Part. Syst. Character. 30(9), 775 (2013)

    Article  Google Scholar 

  9. H.B. Zeng, X.J. Xu, Y.S. Bando, U.K. Gautam, T.Y. Zhai, X.S. Fang, B.D. Liu, D. Golberg, Adv. Funct. Mater. 19(19), 3165 (2009)

    Article  Google Scholar 

  10. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009)

    Article  Google Scholar 

  11. D. Li, S. Wang, J. Wang, X. Zhang, S. Liu, Mater. Res. Bull. 48, 4283 (2013)

    Article  Google Scholar 

  12. X. Sun, X. Wang, L. Qiao, D. Hu, N. Feng, X. Li, Y. Liu, D. He, Electrochem. Acta. 66, 204 (2012)

    Article  Google Scholar 

  13. G. Zhang, S. Hou, H. Zhang, W. Zeng, F. Yan, C.C. Li, H. Duan, Adv. Mater. 27, 2400 (2015)

    Article  Google Scholar 

  14. S. Li, Y.H. Lin, B.P. Zhang, C.W. Nan, Y. Wang, J. Appl. Phys. 105, 054310 (2009)

    Article  ADS  Google Scholar 

  15. S.B. Park, I.J. Chung, J.W. Woo, T.H. Kim, Z. Li, M. Jin, D.J. Lee, J.M. Kim, Mater. Res. Bull. 58, 88 (2014)

    Article  Google Scholar 

  16. K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, J. Phys. Chem. 90, 292 (1986)

    Article  Google Scholar 

  17. A. Kudo, K. Domen, K.I. Maruya, T. Onishi, Chem. Phys. Lett. 133, 517 (1987)

    Article  ADS  Google Scholar 

  18. X. Sun, C. Yan, Y. Chen, W. Si, J. Deng, S. Oswald, L. Liu, O.G. Schmidt, Adv. Energy Mater. 4, 1300912 (2014)

    Article  Google Scholar 

  19. A. Belhadi, S. Boumaza, M. Trari, Appl. Energy 88(12), 4490 (2011)

    Article  Google Scholar 

  20. S. Kaps, S.J. Bhowmick, J. Gröttrup, V. Hrkac, D. Stauffer, H. Guo, O.L. Warren, J. Adam, L. Kienle, A.M. Minor, R. Adelung, Y. Kumar Mishra, ACS Omega 2(6), 2985 (2017)

    Article  Google Scholar 

  21. J.Z. Song, S.A. Kulinich, J. Yan, Z.G. Li, J.P. He, C.X. Kan, H.B. Zeng, Adv. Mater. 25(40), 5750 (2013)

    Article  Google Scholar 

  22. L.L. Chen, X.D. Li, L.L. Qu, C.T. Gao, Y.Q. Wang, F. Teng, Z.X. Zhang, X.J. Pan, E.Q. Xie, J. Alloys. Comp. 86, 766 (2014)

    Article  Google Scholar 

  23. R.I. Bickley, H.G.M. Edwards, S.J. Rose, R. Gustar, J. Mol. Struct. 238, 15 (1990)

    Article  ADS  Google Scholar 

  24. A. Belhadi, S. Boumaza, M. Trari, Appl. Energy 88(12), 4490 (2011)

    Article  Google Scholar 

  25. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105(1), 013502 (2009)

    Article  ADS  Google Scholar 

  26. M.Y. Guo, M.K. Fung, F. Fang, X.Y. Chen, A.M.C. Ng, A.B. Djurišić, W.K. Chan, J. Alloys. Comp. 509(4), 1328 (2011)

    Article  Google Scholar 

  27. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, ACS Appl. Mater. Interfaces. 2, 2915 (2010)

    Article  Google Scholar 

  28. X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Nanoscale. 5, 3601 (2013)

    Article  ADS  Google Scholar 

  29. X. An, F. Teng, P. Zhang, C. Zhao, X. Pan, Z. Zhang, E. Xie, J. Alloys. Comp. 614, 373 (2014)

    Article  Google Scholar 

  30. T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43, 7520 (2014)

    Article  Google Scholar 

  31. J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 43, 7787 (2014)

    Article  Google Scholar 

  32. J.Y. Wang, C.Y. Lee, Y.T. Chen, C.T. Chen, Y.L. Chen, C.F. Lin, Y.F. Chen, Appl. Phys. Lett. 95, 131117 (2009)

    Article  ADS  Google Scholar 

  33. Y.X. Yu, W.X. Ouyang, Z.T. Liao, B.B. Du, W.D. Zhang, ACS Appl. Mater. Interfaces. 6, 8467 (2014)

    Article  Google Scholar 

  34. X. Zhang, Y. Li, J. Zhao, S. Wang, Y. Li, H. Dai, X. Sun, J. Power Sources 269, 466 (2014)

    Article  ADS  Google Scholar 

  35. J. Miao, H.B. Yang, S.Y. Khoo, B. Liu, Nanoscale. 5, 11118 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 51302128), the Natural Science Foundation of Henan province (Grant Nos. 132300410085, 14B140009, 15A140027), and the Program for High Talent Research Start-Up funding of Luoyang Institute of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuyun An or Yongsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Zhang, Y. Fabrication of NiO quantum dot-modified ZnO nanorod arrays for efficient photoelectrochemical water splitting. Appl. Phys. A 123, 647 (2017). https://doi.org/10.1007/s00339-017-1237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1237-2

Navigation