Skip to main content
Log in

Simulations of laser-induced dynamics in free-standing thin silicon films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Femtosecond-laser pulses can induce tremendous structural changes in materials. In most cases these changes are accompanied by a structural reconstruction of the materials’ surface. So far, ab initio methods were not able to simulate laser-excited materials with open boundary conditions, like, films due to technical problems. We have succeeded in overcoming these problems and in performing molecular dynamics simulations of laser-excited thin silicon films. This new stage of ab initio molecular dynamics simulations will influence widely the field of laser-excited solids in both, experiment and theory, allowing to address questions that were unreachable before. Our results indicate that for a moderate excitation strength a breathing mode is induced in the whole film in the direction perpendicular to the surface. In the high intensity regime we predict the time-evolution of experimentally accessible structure factor intensities dependent on the depth into the surface. The results indicate that the surfaces are more resilient than the film center to the femtosecond-laser excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Krüger, D. Dufft, R. Koter, A. Hertwig, Appl. Surf. Sci. 253, 7815 (2007)

    Article  ADS  Google Scholar 

  2. A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Appl. Phys. A 106, 479 (2012)

    Article  ADS  Google Scholar 

  3. D.S. Ivanov, V.P. Lipp, A. Blumenstein, F. Kleinwort, V.P. Veiko, E. Yakovlev, V. Roddatis, M.E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Phys. Rev. Appl. 4, 064006 (2015)

    Article  ADS  Google Scholar 

  4. C. Wang, H. Huo, M. Johnson, M. Shen, E. Mazur, Nanotechnology 21, 075304 (2010)

    Article  ADS  Google Scholar 

  5. T.J.-Y. Derrien, J. Kruger, T.E. Itina, S. Hohm, A. Rosenfeld, J. Bonse, Opt. Express 21, 29643 (2013)

    Article  ADS  Google Scholar 

  6. G. Du, Q. Yang, F. Chen, H. Bian, X. Meng, J. Si, F. Yun, X. Hou, Laser Phys. Lett. 10, 026003 (2013)

    Article  ADS  Google Scholar 

  7. B.K. Nayak, M.C. Gupta, Opt. Lasers Eng. 48, 940 (2010)

    Article  Google Scholar 

  8. T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Langmuir 22, 4917 (2006)

    Article  Google Scholar 

  9. T. Zier, E.S. Zijlstra, A. Kalitsov, I. Theodonis, M.E. Garcia, Struct. Dyn. 2, 054101 (2015)

    Article  Google Scholar 

  10. S. de Silvestri, J.G. Fujimoto, E.P. Ippen, E.B. Gamble Jr., L.R. Williams, K.A. Nelson, Chem. Phys. Lett. 116, 146 (1985)

    Article  ADS  Google Scholar 

  11. H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 45, 768 (1992)

    Article  ADS  Google Scholar 

  12. G.A. Garrett, T.F. Albrecht, J.F. Whitaker, R. Merlin, Phys. Rev. Lett. 77, 3661 (1996)

    Article  ADS  Google Scholar 

  13. M. Hase, M. Kitajima, A.M. Constantinescu, H. Petek, Nature 426, 51 (2003)

    Article  ADS  Google Scholar 

  14. S.L. Johnson, P. Beaud, E. Vorobeva, C.J. Milne, É.D. Murray, S. Fahy, G. Ingold, Phys. Rev. Lett. 102, 175503 (2009)

    Article  ADS  Google Scholar 

  15. E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Phys. Rev. X 3, 011005 (2013)

    Google Scholar 

  16. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998)

    Article  ADS  Google Scholar 

  17. A. Cavalleri, C. Tóth, C.W. Siders, J.A. Squier, F. Ráksi, P. Forget, J.C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001)

    Article  ADS  Google Scholar 

  18. R. Kitagawa, H. Takebe, K. Morinaga, Appl. Phys. Lett. 82, 3641 (2003)

    Article  ADS  Google Scholar 

  19. K. Nasu (ed.), Photoinduced Phase Transitions (World Scientific, New Jersey, 2004)

    MATH  Google Scholar 

  20. S. Wall, D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R.F. Haglund Jr., J. Stähler, M. Wolf, Nat. Commun. 3, 721 (2012)

    Article  ADS  Google Scholar 

  21. L. Rapp, B. Haberl, C.J. Pickard, J.E. Bradby, E.G. Gamaly, J.S. Williams, A.V. Rode, Nat. Commun. 6, 7555 (2015)

    Article  ADS  Google Scholar 

  22. C.V. Shank, R. Yen, C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983)

    Article  ADS  Google Scholar 

  23. C.V. Shank, R. Yen, C. Hirlimann, Phys. Rev. Lett. 51, 900 (1983)

    Article  ADS  Google Scholar 

  24. H.W.K. Tom, G.D. Aumiller, C.H. Brito-Cruz, Phys. Rev. Lett. 60, 1438 (1988)

    Article  ADS  Google Scholar 

  25. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin, Nature 410, 65 (2001)

    Article  ADS  Google Scholar 

  26. T. Dumitrica, A. Burzo, Y. Dou, R.E. Allen, Phys. Status Solidi 241, 1438 (2004)

    Article  Google Scholar 

  27. P.L. Silvestrelli, M. Parinello, J. Appl. Phys. 83, 2478 (1998)

    Article  ADS  Google Scholar 

  28. V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)

    Article  ADS  Google Scholar 

  29. E.S. Zijlstra, T. Zier, B. Bauerhenne, S. Krylow, P.M. Geiger, M.E. Garcia, Appl. Phys. A 114, 1 (2014)

    Article  ADS  Google Scholar 

  30. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)

    Article  ADS  Google Scholar 

  31. P.L. Silvestrelli, A. Alavi, M. Parinello, D. Frenkel, Phys. Rev. B 56, 3806 (1997)

    Article  ADS  Google Scholar 

  32. S. Sen, J.E. Dickinson, Phys. Rev. B 68, 214204 (2003)

    Article  ADS  Google Scholar 

  33. E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Adv. Mater. 25, 5605 (2013)

    Article  Google Scholar 

  34. T. Zier, E.S. Zijlstra, M.E. Garcia, Phys. Rev. Lett. 116, 153901 (2016)

    Article  ADS  Google Scholar 

  35. P. Stampfli, K.H. Bennemann, Phys. Rev. B 42, 7163 (1990)

    Article  ADS  Google Scholar 

  36. P. Ji, Y. Zhang, J. Phys. D Appl. Phys. 46, 495108 (2013)

    Article  Google Scholar 

  37. H.-J. Hou, F.-J. Kong, Phys. Status Solidi B 248, 1399 (2011)

    Article  ADS  Google Scholar 

  38. S. Feng, J. Zhao, X. Cheng, H. Zhang, J. Appl. Phys. 114, 043519 (2013)

    Article  ADS  Google Scholar 

  39. G.P. Kerker, Phys. Rev. B 23, 3082 (1981)

    Article  ADS  Google Scholar 

  40. P. Pulay, Chem. Phys. Lett. 73, 393 (1980)

    Article  ADS  Google Scholar 

  41. K. Sokolowski-Tinten, J. Bialkowski, D. von der Linde, Phys. Rev. B 51, 14186 (1998)

    Article  ADS  Google Scholar 

  42. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, M. Kammler, Phys. Rev. Lett. 87, 225701 (2001)

    Article  ADS  Google Scholar 

  43. M. Harb, R. Ernstorfer, C.T. Hebeisen, G. Sciaini, W. Peng, T. Dartigalongue, M.A. Eriksson, M.G. Lagally, S.G. Kruglik, R.J.D. Miller, Phys. Rev. Lett. 100, 155504 (2008)

    Article  ADS  Google Scholar 

  44. L. Waldecker, T. Vasileiadis, R. Bertoni, T. Zier, F.H. Valencia, E.S. Zijlstra, M.E. Garcia, R. Ernstorfer, Phys. Rev. B 95, 054302 (2017)

    Article  ADS  Google Scholar 

  45. T. Zier, E.S. Zijlstra, M.E. Garcia, Appl. Phys. A 117, 1 (2014)

    Article  ADS  Google Scholar 

  46. N.S. Grigoryan, T. Zier, M.E. Garcia, JOSA B 31, C22–C27 (2014)

    Article  Google Scholar 

  47. L.D. Marks, D.R. Luke, Phys. Rev. B 78, 075114 (2008)

    Article  ADS  Google Scholar 

  48. http://www.abinit.org. Accessed 25 June 2017

  49. E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, P. Gumbsch, Phys. Rev. Lett. 97, 170201 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge gratefully the financial support of the Deutsche Forschungsgemeinschaft through the project GA465/16-1 and GA465/18-1. The needed computations were performed at the Lichtenberg High Performance Computer of the Technical University Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Zier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zier, T., Zijlstra, E.S., Krylow, S. et al. Simulations of laser-induced dynamics in free-standing thin silicon films. Appl. Phys. A 123, 625 (2017). https://doi.org/10.1007/s00339-017-1230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1230-9

Navigation