Applied Physics A

, 123:625 | Cite as

Simulations of laser-induced dynamics in free-standing thin silicon films

  • Tobias ZierEmail author
  • Eeuwe S. Zijlstra
  • Sergej Krylow
  • Martin E. Garcia
Part of the following topical collections:
  1. New Frontiers in Laser Interaction


Femtosecond-laser pulses can induce tremendous structural changes in materials. In most cases these changes are accompanied by a structural reconstruction of the materials’ surface. So far, ab initio methods were not able to simulate laser-excited materials with open boundary conditions, like, films due to technical problems. We have succeeded in overcoming these problems and in performing molecular dynamics simulations of laser-excited thin silicon films. This new stage of ab initio molecular dynamics simulations will influence widely the field of laser-excited solids in both, experiment and theory, allowing to address questions that were unreachable before. Our results indicate that for a moderate excitation strength a breathing mode is induced in the whole film in the direction perpendicular to the surface. In the high intensity regime we predict the time-evolution of experimentally accessible structure factor intensities dependent on the depth into the surface. The results indicate that the surfaces are more resilient than the film center to the femtosecond-laser excitation.



We acknowledge gratefully the financial support of the Deutsche Forschungsgemeinschaft through the project GA465/16-1 and GA465/18-1. The needed computations were performed at the Lichtenberg High Performance Computer of the Technical University Darmstadt.


  1. 1.
    J. Krüger, D. Dufft, R. Koter, A. Hertwig, Appl. Surf. Sci. 253, 7815 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Appl. Phys. A 106, 479 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    D.S. Ivanov, V.P. Lipp, A. Blumenstein, F. Kleinwort, V.P. Veiko, E. Yakovlev, V. Roddatis, M.E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Phys. Rev. Appl. 4, 064006 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    C. Wang, H. Huo, M. Johnson, M. Shen, E. Mazur, Nanotechnology 21, 075304 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    T.J.-Y. Derrien, J. Kruger, T.E. Itina, S. Hohm, A. Rosenfeld, J. Bonse, Opt. Express 21, 29643 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    G. Du, Q. Yang, F. Chen, H. Bian, X. Meng, J. Si, F. Yun, X. Hou, Laser Phys. Lett. 10, 026003 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    B.K. Nayak, M.C. Gupta, Opt. Lasers Eng. 48, 940 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Langmuir 22, 4917 (2006)CrossRefGoogle Scholar
  9. 9.
    T. Zier, E.S. Zijlstra, A. Kalitsov, I. Theodonis, M.E. Garcia, Struct. Dyn. 2, 054101 (2015)CrossRefGoogle Scholar
  10. 10.
    S. de Silvestri, J.G. Fujimoto, E.P. Ippen, E.B. Gamble Jr., L.R. Williams, K.A. Nelson, Chem. Phys. Lett. 116, 146 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 45, 768 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    G.A. Garrett, T.F. Albrecht, J.F. Whitaker, R. Merlin, Phys. Rev. Lett. 77, 3661 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    M. Hase, M. Kitajima, A.M. Constantinescu, H. Petek, Nature 426, 51 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    S.L. Johnson, P. Beaud, E. Vorobeva, C.J. Milne, É.D. Murray, S. Fahy, G. Ingold, Phys. Rev. Lett. 102, 175503 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Phys. Rev. X 3, 011005 (2013)Google Scholar
  16. 16.
    T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    A. Cavalleri, C. Tóth, C.W. Siders, J.A. Squier, F. Ráksi, P. Forget, J.C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    R. Kitagawa, H. Takebe, K. Morinaga, Appl. Phys. Lett. 82, 3641 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    K. Nasu (ed.), Photoinduced Phase Transitions (World Scientific, New Jersey, 2004)zbMATHGoogle Scholar
  20. 20.
    S. Wall, D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R.F. Haglund Jr., J. Stähler, M. Wolf, Nat. Commun. 3, 721 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    L. Rapp, B. Haberl, C.J. Pickard, J.E. Bradby, E.G. Gamaly, J.S. Williams, A.V. Rode, Nat. Commun. 6, 7555 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    C.V. Shank, R. Yen, C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    C.V. Shank, R. Yen, C. Hirlimann, Phys. Rev. Lett. 51, 900 (1983)ADSCrossRefGoogle Scholar
  24. 24.
    H.W.K. Tom, G.D. Aumiller, C.H. Brito-Cruz, Phys. Rev. Lett. 60, 1438 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin, Nature 410, 65 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    T. Dumitrica, A. Burzo, Y. Dou, R.E. Allen, Phys. Status Solidi 241, 1438 (2004)CrossRefGoogle Scholar
  27. 27.
    P.L. Silvestrelli, M. Parinello, J. Appl. Phys. 83, 2478 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    E.S. Zijlstra, T. Zier, B. Bauerhenne, S. Krylow, P.M. Geiger, M.E. Garcia, Appl. Phys. A 114, 1 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    P.L. Silvestrelli, A. Alavi, M. Parinello, D. Frenkel, Phys. Rev. B 56, 3806 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    S. Sen, J.E. Dickinson, Phys. Rev. B 68, 214204 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Adv. Mater. 25, 5605 (2013)CrossRefGoogle Scholar
  34. 34.
    T. Zier, E.S. Zijlstra, M.E. Garcia, Phys. Rev. Lett. 116, 153901 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    P. Stampfli, K.H. Bennemann, Phys. Rev. B 42, 7163 (1990)ADSCrossRefGoogle Scholar
  36. 36.
    P. Ji, Y. Zhang, J. Phys. D Appl. Phys. 46, 495108 (2013)CrossRefGoogle Scholar
  37. 37.
    H.-J. Hou, F.-J. Kong, Phys. Status Solidi B 248, 1399 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    S. Feng, J. Zhao, X. Cheng, H. Zhang, J. Appl. Phys. 114, 043519 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    G.P. Kerker, Phys. Rev. B 23, 3082 (1981)ADSCrossRefGoogle Scholar
  40. 40.
    P. Pulay, Chem. Phys. Lett. 73, 393 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    K. Sokolowski-Tinten, J. Bialkowski, D. von der Linde, Phys. Rev. B 51, 14186 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, M. Kammler, Phys. Rev. Lett. 87, 225701 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    M. Harb, R. Ernstorfer, C.T. Hebeisen, G. Sciaini, W. Peng, T. Dartigalongue, M.A. Eriksson, M.G. Lagally, S.G. Kruglik, R.J.D. Miller, Phys. Rev. Lett. 100, 155504 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    L. Waldecker, T. Vasileiadis, R. Bertoni, T. Zier, F.H. Valencia, E.S. Zijlstra, M.E. Garcia, R. Ernstorfer, Phys. Rev. B 95, 054302 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    T. Zier, E.S. Zijlstra, M.E. Garcia, Appl. Phys. A 117, 1 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    N.S. Grigoryan, T. Zier, M.E. Garcia, JOSA B 31, C22–C27 (2014)CrossRefGoogle Scholar
  47. 47.
    L.D. Marks, D.R. Luke, Phys. Rev. B 78, 075114 (2008)ADSCrossRefGoogle Scholar
  48. 48. Accessed 25 June 2017
  49. 49.
    E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, P. Gumbsch, Phys. Rev. Lett. 97, 170201 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Tobias Zier
    • 1
    Email author
  • Eeuwe S. Zijlstra
    • 1
  • Sergej Krylow
    • 1
  • Martin E. Garcia
    • 1
  1. 1.Theoretical Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSAT)Universität KasselKasselGermany

Personalised recommendations