Skip to main content
Log in

Molecular dynamics simulations of a femtosecond-laser-induced solid-to-solid transition in antimony

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We performed ab initio molecular dynamics (MD) simulations to describe the ultrafast dynamics of laser-excited antimony on a supercell consisting of 864 atoms. For low laser fluences (represented in our theory by moderate electronic temperatures), we obtain the well-known oscillations of the crystal planes in the [111] direction, corresponding to the large amplitude coherent A\(_{1\rm g}\) phonon. For large fluences (high electronic temperature) below the melting threshold, simulations suggest a possible transition from the initial, Peierls-distorted A7 structure into a structure without Peierls distortion. However, fluctuations due to finite size effects prevent a clean demonstration of such a nonthermal phase transition. Therefore, and based on the ab initio results, we derived an analytical potential depending on the electronic temperature and used it to perform large-scale MD simulations in supercells containing up to 10\(^6\) atoms. The potential can clearly reproduce the nonthermal phenomena and the excitation of the A\(_{1\rm g}\) coherent phonon observed in the ab initio results. Most importantly, due to the minimization of finite size effects, our large-scale simulations predict a clean nonthermal transition from the Peierls-distorted A7 structure into a structure without Peierls distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Cavalleri, C. Tóth, C.W. Siders, J.A. Squier, F. Ráksi, P. Forget, J.C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001)

    Article  ADS  Google Scholar 

  2. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J.C. Woo, D.S. Kim, M. Woerner, T. Elsaesser, Science 306(5702), 1771 (2004)

    Article  ADS  Google Scholar 

  3. F. Carbone, P. Baum, P. Rudolf, A.H. Zewail, Phys. Rev. Lett. 100, 035501 (2008)

    Article  ADS  Google Scholar 

  4. R.J.D. Miller, R. Ernstorfer, M. Harb, M. Gao, C.T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, Acta Crystallogr. Sect. A 66(2), 137 (2010)

    Article  ADS  Google Scholar 

  5. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Forster, M. Kammler, M. Horn-von Hoegen, D. von der Linde, Nature 422, 287 (2003)

    Article  ADS  Google Scholar 

  6. K. Ishioka, M. Kitajima, O.V. Misochko, J. Appl. Phys. 103(12), 123505 (2008)

    Article  ADS  Google Scholar 

  7. S. Wall, D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R. Haglund Jr., J. Stähler, M. Wolf, Nature Commun. 3, 721 (2012)

    Article  ADS  Google Scholar 

  8. K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, D. von der Linde, Phys. Rev. B 58, R11805 (1998)

    Article  ADS  Google Scholar 

  9. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, M. Kammler, Phys. Rev. Lett. 87, 225701 (2001)

    Article  ADS  Google Scholar 

  10. M. Harb, R. Ernstorfer, C.T. Hebeisen, G. Sciaini, W. Peng, T. Dartigalongue, M.A. Eriksson, M.G. Lagally, S.G. Kruglik, R.J.D. Miller, Phys. Rev. Lett. 100, 155504 (2008)

    Article  ADS  Google Scholar 

  11. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Zh. Eksp. Teor. Fi 66, 776 (1974)

    ADS  Google Scholar 

  12. P. Stampfli, K.H. Bennemann, Phys. Rev. B 42, 7163 (1990)

    Article  ADS  Google Scholar 

  13. P. Stampfli, K.H. Bennemann, Phys. Rev. B 46, 10686 (1992)

    Article  ADS  Google Scholar 

  14. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)

    Article  ADS  Google Scholar 

  15. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  16. T. Dumitrica, A. Burzo, Y. Dou, R.E. Allen, Phys. Stat. Solidi. b 241(10), 2331 (2004)

    Article  ADS  Google Scholar 

  17. V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)

    Article  ADS  Google Scholar 

  18. E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Adv. Mater. 25(39), 5605 (2013)

    Article  Google Scholar 

  19. N.D. Mermin, Phys. Rev. 137, A1441 (1965)

    Article  ADS  Google Scholar 

  20. E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Phys. Rev. X 3, 011005 (2013)

    Google Scholar 

  21. S. Khakshouri, D. Alfè, D.M. Duffy, Phys. Rev. B 78, 224304 (2008)

    Article  ADS  Google Scholar 

  22. L. Shokeen, P.K. Schelling, Appl. Phys. Lett. 97(15), 151907 (2010)

    Article  ADS  Google Scholar 

  23. G. Norman, S. Starikov, V. Stegailov, J. Exp. Theor. Phys. 114(5), 792–800 (2012)

    Article  ADS  Google Scholar 

  24. J.A. Moriarty, R.Q. Hood, L.H. Yang, Phys. Rev. Lett. 108, 036401 (2012)

    Article  ADS  Google Scholar 

  25. S.T. Murphy, S.L. Daraszewicz, Y. Giret, M. Watkins, A.L. Shluger, K. Tanimura, D.M. Duffy, Phys. Rev. B 92, 134110 (2015)

    Article  ADS  Google Scholar 

  26. M. Hase, K. Ushida, M. Kitajima, J. Phys. Soc. Jpn. 84(2), 024708 (2015)

    Article  ADS  Google Scholar 

  27. H. Kumagai, I. Matsubara, J. Nakahara, T. Mishina, arXiv:1603.00111 (2016)

  28. O.V. Misochko, J. Exp. Theor. Phys. 123(2), 292 (2016)

    Article  ADS  Google Scholar 

  29. B.N. Mironov, V.O. Kompanets, S.A. Aseev, A.A. Ischenko, I.V. Kochikov, O.V. Misochko, S.V. Chekalin, E.A. Ryabov, J. Exp. Theor. Phys. 124(3), 422 (2017)

    Article  ADS  Google Scholar 

  30. S.L. Johnson, P. Beaud, E. Möhr-Vorobeva, A. Caviezel, G. Ingold, C.J. Milne, Phys. Rev. B 87, 054301 (2013)

    Article  ADS  Google Scholar 

  31. A.A. Melnikov, O.V. Misochko, S.V. Chekalin, J. Appl. Phys. 114(3), 033502 (2013)

    Article  ADS  Google Scholar 

  32. T.N. Kolobyanina, S.S. Kabalkina, L.F. Vereshchagin, L.V. Fedina, Zh. Eksp. Teor. Fiz. 55, 164 (1968)

    Google Scholar 

  33. E.S. Zijlstra, N. Huntemann, M.E. Garcia, New J. Phys. 10(3), 033010 (2008)

    Article  ADS  Google Scholar 

  34. N. Huntemann, E.S. Zijlstra, M.E. Garcia, Appl. Phys. A 96(1), 19 (2009)

    Article  ADS  Google Scholar 

  35. E.S. Zijlstra, F. CheenicodeKabeer, B. Bauerhenne, T. Zier, N. Grigoryan, M.E. Garcia, Appl. Phys. A 110(3), 519 (2013)

    Article  ADS  Google Scholar 

  36. E.S. Zijlstra, T. Zier, B. Bauerhenne, S. Krylow, P.M. Geiger, M.E. Garcia, Appl. Phys. A 114(1), 1 (2014)

    Article  ADS  Google Scholar 

  37. N.S. Grigoryan, T. Zier, M.E. Garcia, E.S. Zijlstra, J. Opt. Soc. Am. B 31(11), C22 (2014)

    Article  Google Scholar 

  38. S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)

    Article  ADS  Google Scholar 

  39. Y. Liu, R.E. Allen, Phys. Rev. B 52, 1566 (1995)

    Article  ADS  Google Scholar 

  40. H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 45, 768 (1992)

    Article  ADS  Google Scholar 

  41. http://www.random.org, pregenerated binary random number files from 01.01.2016 to 24.03.2016 were used

  42. B. Bauerhenne, V.P. Lipp, T. Zier, E.S. Zijlstra, M.E. Garcia (unpublished)

  43. F. Ercolessi, J.B. Adams, Europhys. Lett. 26(8), 583 (1994)

    Article  ADS  Google Scholar 

  44. L. Waldecker, T. Vasileiadis, R. Bertoni, R. Ernstorfer, T. Zier, F.H. Valencia, M.E. Garcia, E.S. Zijlstra, Phys. Rev. B 95, 054302 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

B.B. acknowledges the support of the Otto-Braun-Fonds. The support of the computational facilities of the University of Darmstadt, Kassel and Frankfurt, is acknowledged. M.E.G acknowledges DFG though projects GA465/16-1 and GA465/18-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Bauerhenne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauerhenne, B., Zijlstra, E.S. & Garcia, M.E. Molecular dynamics simulations of a femtosecond-laser-induced solid-to-solid transition in antimony. Appl. Phys. A 123, 608 (2017). https://doi.org/10.1007/s00339-017-1216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1216-7

Navigation