Applied Physics A

, 123:608 | Cite as

Molecular dynamics simulations of a femtosecond-laser-induced solid-to-solid transition in antimony

  • Bernd BauerhenneEmail author
  • Eeuwe S. Zijlstra
  • Martin E. Garcia
Part of the following topical collections:
  1. New Frontiers in Laser Interaction


We performed ab initio molecular dynamics (MD) simulations to describe the ultrafast dynamics of laser-excited antimony on a supercell consisting of 864 atoms. For low laser fluences (represented in our theory by moderate electronic temperatures), we obtain the well-known oscillations of the crystal planes in the [111] direction, corresponding to the large amplitude coherent A\(_{1\rm g}\) phonon. For large fluences (high electronic temperature) below the melting threshold, simulations suggest a possible transition from the initial, Peierls-distorted A7 structure into a structure without Peierls distortion. However, fluctuations due to finite size effects prevent a clean demonstration of such a nonthermal phase transition. Therefore, and based on the ab initio results, we derived an analytical potential depending on the electronic temperature and used it to perform large-scale MD simulations in supercells containing up to 10\(^6\) atoms. The potential can clearly reproduce the nonthermal phenomena and the excitation of the A\(_{1\rm g}\) coherent phonon observed in the ab initio results. Most importantly, due to the minimization of finite size effects, our large-scale simulations predict a clean nonthermal transition from the Peierls-distorted A7 structure into a structure without Peierls distortion.



B.B. acknowledges the support of the Otto-Braun-Fonds. The support of the computational facilities of the University of Darmstadt, Kassel and Frankfurt, is acknowledged. M.E.G acknowledges DFG though projects GA465/16-1 and GA465/18-1.


  1. 1.
    A. Cavalleri, C. Tóth, C.W. Siders, J.A. Squier, F. Ráksi, P. Forget, J.C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    M. Bargheer, N. Zhavoronkov, Y. Gritsai, J.C. Woo, D.S. Kim, M. Woerner, T. Elsaesser, Science 306(5702), 1771 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    F. Carbone, P. Baum, P. Rudolf, A.H. Zewail, Phys. Rev. Lett. 100, 035501 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    R.J.D. Miller, R. Ernstorfer, M. Harb, M. Gao, C.T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, Acta Crystallogr. Sect. A 66(2), 137 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Forster, M. Kammler, M. Horn-von Hoegen, D. von der Linde, Nature 422, 287 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    K. Ishioka, M. Kitajima, O.V. Misochko, J. Appl. Phys. 103(12), 123505 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S. Wall, D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R. Haglund Jr., J. Stähler, M. Wolf, Nature Commun. 3, 721 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, D. von der Linde, Phys. Rev. B 58, R11805 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, M. Kammler, Phys. Rev. Lett. 87, 225701 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    M. Harb, R. Ernstorfer, C.T. Hebeisen, G. Sciaini, W. Peng, T. Dartigalongue, M.A. Eriksson, M.G. Lagally, S.G. Kruglik, R.J.D. Miller, Phys. Rev. Lett. 100, 155504 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Zh. Eksp. Teor. Fi 66, 776 (1974)ADSGoogle Scholar
  12. 12.
    P. Stampfli, K.H. Bennemann, Phys. Rev. B 42, 7163 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    P. Stampfli, K.H. Bennemann, Phys. Rev. B 46, 10686 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    T. Dumitrica, A. Burzo, Y. Dou, R.E. Allen, Phys. Stat. Solidi. b 241(10), 2331 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Adv. Mater. 25(39), 5605 (2013)CrossRefGoogle Scholar
  19. 19.
    N.D. Mermin, Phys. Rev. 137, A1441 (1965)ADSCrossRefGoogle Scholar
  20. 20.
    E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Phys. Rev. X 3, 011005 (2013)Google Scholar
  21. 21.
    S. Khakshouri, D. Alfè, D.M. Duffy, Phys. Rev. B 78, 224304 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    L. Shokeen, P.K. Schelling, Appl. Phys. Lett. 97(15), 151907 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    G. Norman, S. Starikov, V. Stegailov, J. Exp. Theor. Phys. 114(5), 792–800 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J.A. Moriarty, R.Q. Hood, L.H. Yang, Phys. Rev. Lett. 108, 036401 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S.T. Murphy, S.L. Daraszewicz, Y. Giret, M. Watkins, A.L. Shluger, K. Tanimura, D.M. Duffy, Phys. Rev. B 92, 134110 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    M. Hase, K. Ushida, M. Kitajima, J. Phys. Soc. Jpn. 84(2), 024708 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    H. Kumagai, I. Matsubara, J. Nakahara, T. Mishina, arXiv:1603.00111 (2016)
  28. 28.
    O.V. Misochko, J. Exp. Theor. Phys. 123(2), 292 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    B.N. Mironov, V.O. Kompanets, S.A. Aseev, A.A. Ischenko, I.V. Kochikov, O.V. Misochko, S.V. Chekalin, E.A. Ryabov, J. Exp. Theor. Phys. 124(3), 422 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    S.L. Johnson, P. Beaud, E. Möhr-Vorobeva, A. Caviezel, G. Ingold, C.J. Milne, Phys. Rev. B 87, 054301 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    A.A. Melnikov, O.V. Misochko, S.V. Chekalin, J. Appl. Phys. 114(3), 033502 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    T.N. Kolobyanina, S.S. Kabalkina, L.F. Vereshchagin, L.V. Fedina, Zh. Eksp. Teor. Fiz. 55, 164 (1968)Google Scholar
  33. 33.
    E.S. Zijlstra, N. Huntemann, M.E. Garcia, New J. Phys. 10(3), 033010 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    N. Huntemann, E.S. Zijlstra, M.E. Garcia, Appl. Phys. A 96(1), 19 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    E.S. Zijlstra, F. CheenicodeKabeer, B. Bauerhenne, T. Zier, N. Grigoryan, M.E. Garcia, Appl. Phys. A 110(3), 519 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    E.S. Zijlstra, T. Zier, B. Bauerhenne, S. Krylow, P.M. Geiger, M.E. Garcia, Appl. Phys. A 114(1), 1 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    N.S. Grigoryan, T. Zier, M.E. Garcia, E.S. Zijlstra, J. Opt. Soc. Am. B 31(11), C22 (2014)CrossRefGoogle Scholar
  38. 38.
    S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Liu, R.E. Allen, Phys. Rev. B 52, 1566 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 45, 768 (1992)ADSCrossRefGoogle Scholar
  41. 41., pregenerated binary random number files from 01.01.2016 to 24.03.2016 were used
  42. 42.
    B. Bauerhenne, V.P. Lipp, T. Zier, E.S. Zijlstra, M.E. Garcia (unpublished)Google Scholar
  43. 43.
    F. Ercolessi, J.B. Adams, Europhys. Lett. 26(8), 583 (1994)ADSCrossRefGoogle Scholar
  44. 44.
    L. Waldecker, T. Vasileiadis, R. Bertoni, R. Ernstorfer, T. Zier, F.H. Valencia, M.E. Garcia, E.S. Zijlstra, Phys. Rev. B 95, 054302 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Theoretical Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSAT)University of KasselKasselGermany

Personalised recommendations