Skip to main content
Log in

Fabrication and characterization of the organic rectifying junctions by electrolysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Unlike the conventional solution processable deposition techniques, in this study, we propose a novel and economical method for the fabrication of organic rectifying junctions. The solutions of the orange dye, copper phthalocyanine and NaCl were deposited on the surface-type interdigitated silver electrodes using electrolysis technique. Using the current–voltage (I–V) characteristics, the presence of rectifying behavior in the samples has been confirmed. This phenomenon, in principle, can be used for fabrication of the diodes, transistors and memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Braun, S. MacDonald, Revolution in Miniature: the History and Impact of Semiconductor Electronics (Cambridge University Press, 1982)

  2. T. Minari, C. Liu, M. Kano, K. Tsukagoshi, Controlled self-assembly of organic semiconductors for solution-based fabrication of organic field-effect transistors. Adv. Mater. 24(2), 299–306 (2012). doi:10.1002/adma.201102554

    Article  Google Scholar 

  3. T. Maruyama, Y. Osaki, Electrochromic properries of manganese oxide thin films prepared by chemical vapor deposition. J. Electrochem. Soc. 142(9), 3137–3141 (1995)

    Article  Google Scholar 

  4. W.Y. William, J.C. Falkner, C.T. Yavuz, V.L. Colvin, Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 20, 2306–2307 (2004)

    Google Scholar 

  5. G. Myburg, F. Auret, Influence of the electron beam evaporation rate of Pt and the semiconductor carrier density on the characteristics of Pt/n–GaAs Schottky contacts. J. Appl. Phys. 71(12), 6172–6176 (1992)

    Article  ADS  Google Scholar 

  6. T. Ali, K.S. Karimov, K.M. Akhmedov, K. Kabutov, A. Farooq, Thermo photo-electrochemical effect in n-InP/aqueous solution of orange dye/C cell. Electron. Mater. Lett. 11(2), 259–265 (2015)

    Article  ADS  Google Scholar 

  7. M.T.S. Chani, K.S. Karimov, S.B. Khan, A.M. Asiri, Fabrication and investigation of flexible photo-thermo electrochemical cells based on Cu/orange dye aqueous solution/Cu. Int. J. Electrochem. Sci. 10, 5694–5701 (2015)

    Google Scholar 

  8. Z. Ahmad, K.S. Karimov, N. Fatima, F. Touati, Flexible organic photo-thermogalvanic cell for low power applications. J. Mater. Sci. Mater. Electron. 27(3), 2442–2447 (2016)

    Article  Google Scholar 

  9. M. Saleem, M. Sayyad, K. Kartmov, K. Kabutov, Photoelectric studies of n-InP/orange dye/ITO cell. J. Optoelectron. Adv. Mater. 18(1–2), 123–129 (2016)

    Google Scholar 

  10. K. Karimov, M. Saleem, M.M. Bashir, T. ALIa, Temperature sensitivity of Zn/orange dye aqueous solution/carbon cell. Optoelectron. Adv. Mater. Rapid Commun. 10(3–4), 205–208 (2016)

    Google Scholar 

  11. M.T.S. Chani, K.S. Karimov, F. Khalid, S. Abbas, M. Bhatty, Orange dye? Polyaniline composite based impedance humidity sensors. Chin. Phys. B 22(1), 010701 (2013)

    Article  Google Scholar 

  12. K.S.K. Syed Abdul Moiz, M.M. Ahmed, Electrical Characterization of Novel Organic Semiconductor: Materials and Devices for Sensor Technology (VDM Verlag Dr. Müller, Saarbrucken, 2010)

    Google Scholar 

  13. R.O. Loutfy, J.H. Sharp, C.K. Hsiao, R. Ho, Phthalocyanine organic solar cells: indium/x-metal free phthalocyanine Schottky barriers. J. Appl. Phys. 52(8), 5218–5230 (1981). doi:10.1063/1.329425

    Article  ADS  Google Scholar 

  14. K.S. Karimov, M. Ahmed, S. Moiz, M. Fedorov, Temperature-dependent properties of organic-on-inorganic Ag/p-CuPc/n-GaAs/Ag photoelectric cell. Sol. Energy Mater. Sol. Cells 87(1), 61–75 (2005)

    Article  Google Scholar 

  15. S.B. Khan, A.M. Asiri, K. Akhtar, Nanomaterials and their Fascinating Attributes, vol. 1, chap. 104 (Bentham E-books, 2016)

  16. D.A. Neamen, Semiconductor Physics and Devices (Irwin, Chicago, 1992)

    Google Scholar 

  17. D.B. Hibbert, Introduction to Electrochemistry (Macmillan Education, UK, 1993), pp. 1–10

    Book  Google Scholar 

  18. A.B. Ellis, Teaching General Chemistry: a Materials Science Companion (ERIC, Washington, 1993), p. 20036

    Google Scholar 

  19. M.M. Al-Amar, K.J. Hamam, G. Mezei, R. Guda, N.M. Hamdan, C.A. Burns, A new method to improve the lifetime stability of small molecule bilayer heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 109, 270–274 (2013)

    Article  Google Scholar 

  20. G. Gauglitz, Ultraviolet and Visible Spectroscopy (Ullmann’s Encyclopedia of Industrial Chemistry, Wiley Online Library, 1994)

Download references

Acknowledgements

The authors are thankful to the Center for Advanced Materials (CAM), Qatar University for exclusive support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, K., Ahmad, Z., Ali, R. et al. Fabrication and characterization of the organic rectifying junctions by electrolysis. Appl. Phys. A 123, 546 (2017). https://doi.org/10.1007/s00339-017-1160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1160-6

Navigation