Skip to main content
Log in

Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium–zinc–phosphate glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Nd3+-doped lithium–zinc–phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190–1200 nm. The values of optical band gap and Urbach energy were determined based on Mott–Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Dorosz, M. Kochanowicz, J. Dorosz, Multicore optical fibres for an external talbot cavity. Acta. Phys. Pol. A 116, 298–301 (2009)

    Article  ADS  Google Scholar 

  2. R. Balda, J. Fernandez, M. Sanz, A. de Pablon, J.M.F. Navarro, J. Mugnier, Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses. Phys. Rev. B 61, 3384–3390 (2000)

    Article  ADS  Google Scholar 

  3. N.S. Hussain, K. Annapurna, Y.P. Reddy, S. Buddhuda, Photoluminescence spectra of Sm3+:PbO–Bi2O3–GeO2 glasses. J. Mater. Sci. Lett. 21, 397–399 (2002)

    Article  Google Scholar 

  4. S. Xu, Z. Yong, G. Wang, S. Dai, J. Zhang, L. Hu, Z. Jiang, Optical transitions and upconversion mechanisms in Er3+-doped heavy metal oxyfluoride germanate glass. J. Alloys Compd. 377, 253–258 (2004)

    Article  Google Scholar 

  5. M. Eugenia, B. Bruno, G. Dominique, P. Guillaume, Optical properties of pristine and γ-irradiated Sm doped borosilicate glasses. Nucl. Instrum. Methods Phys. Res. A 537, 411–414 (2005)

    Article  Google Scholar 

  6. L. Zur, Structural and luminescence properties of Eu3+, Dy3+ and Tb3+ ions in lead germanate glasses obtained by conventional high-temperature melt-quenching technique. J. Mol. Struct. 1041, 50–54 (2013)

    Article  ADS  Google Scholar 

  7. G.D. Khattak, E.E. Khawaja, L.E. Wenger, D.J. Thompson, M.A. Salim, A.B. Hallak, M.A. Daous, Composition-dependent loss of phosphorus in the formation of transition-metal phosphate glasses. J. Non-Cryst. Solids 194, 1–12 (1996)

    Article  ADS  Google Scholar 

  8. S.W. Martin, Review of the structures of phosphate glasses. Eur. J. Solid State Inorg. Chem. 28, 163–205 (1991)

    Google Scholar 

  9. D.E. Day, Z. Wu, C.S. Ray, P. Hrma, Chemically durable iron phosphate glass wasteforms. J. Non Cryst. Solids 241, 1–12 (1998)

    Article  ADS  Google Scholar 

  10. R.K. Brow, Review: the structure of simple phosphate glasses. J. Non Cryst. Solids 263–264, 1–28 (2000)

    Article  Google Scholar 

  11. J.A. Caird, A.J. Romponi, P.R. Staves, Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses. J. Opt. Soc. Am. B 8, 1391–1403 (1991)

    Article  ADS  Google Scholar 

  12. P. Pascuta, M. Bosca, G. Borodi, E. Culea, Thermal, structural and magnetic properties of some zinc phosphate glasses doped with manganese ions. J. Alloys Compd. 509, 4314–4319 (2011)

    Article  Google Scholar 

  13. C.E. Smith, R.K. Brow, The properties and structure of zinc magnesium phosphate glasses. J. Non Cryst. Solids 390, 51–58 (2014)

    Article  ADS  Google Scholar 

  14. K. Aida, T. Komatsu, V. Dimitrov, Thermal stability, electronic polarisability and optical basicity of ternary tellurite glasses. Phys. Chem. Glasses 42(2), 103–111 (2001)

    Google Scholar 

  15. P.W. McMillan, Glass ceramics, 2nd edn. (Academic Press, London, 1979)

    Google Scholar 

  16. H. Lin, E.Y.B. Pun, S.Q. Man, X.R. Liu, Optical transitions and frequency upconversion of Er3+ ions in Na2O·Ca3Al2Ge3O12 glasses. J. Opt. Soc. Am. B 18, 602–609 (2001)

    Article  ADS  Google Scholar 

  17. H. Lin, E.Y.B. Pun, L.H. Huang, X.R. Liu, Optical and luminescence properties of Sm3+-doped cadmium–aluminum–silicate glasses. Appl. Phys. Lett. 80, 2642–2644 (2002)

    Article  ADS  Google Scholar 

  18. Y.G. Choi, K.H. Kim, B.J. Park, J. Heo, 1.6 μm emission from Pr3+: (3F3,3F4) → 3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses. Appl. Phys. Lett. 78, 1249–1251 (2001)

    Article  ADS  Google Scholar 

  19. H. Higuchi, M. Takahashi, Y. Kamamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, N. Kitamura, Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses. J. Appl. Phys. 83, 19–27 (1998)

    Article  ADS  Google Scholar 

  20. M. Shaweta, S.T. Kulwant, S. Gopi, G. Leif, Spectroscopic investigations of Nd3+ doped flouro- and chloro-borate glasses. Spectrochim. Acta 70, 1173–1179 (2008)

    Article  Google Scholar 

  21. L.R. Moorthy, T.S. Rao, M. Jayasimhadri, A. Radhapathy, D.V.R. Murthy, Spectroscopic investigations of Nd3+-doped alkali chloroborophosphate glasses. Spectrochim. Acta Part A 60, 2449–2458 (2004)

    Article  ADS  Google Scholar 

  22. K. Boonin, J. Kaewkhao, T. Ratana, Preparation and properties of Bi2O3–B2O3–Nd2O3 glass system. Proc. Eng. 8, 207–211 (2011)

    Article  Google Scholar 

  23. V.C. Veeranna Gowda, Effect of Bi3+ ions on physical, thermal, spectroscopic and optical properties of Nd3+ doped sodium diborate glasses. Phys. B 426, 58–64 (2013)

    Article  ADS  Google Scholar 

  24. M.A. Algradee, A. Elwhab, B. Alwany, M. Sultan, M. Elgoshimy, Q. Almoraisy, Physical and optical properties for Nd2O3 doped lithium–zinc–phosphate glasses. Optik 142, 13–22 (2017)

    Article  ADS  Google Scholar 

  25. M.A. Algradee, A. Elwhab, B. Alwany, A.A. Higazy, Mechanical and optical properties for Li2O–ZnO–P2O5:xYb2O3 glasses. J Adv. Phys. 6, 163–170 (2017)

    Article  Google Scholar 

  26. H.A.A. Sidek, M. Hamezan, A.W. Zaidan, Z.A. Talib, K. Kaida, Optical characterization of lead–bismuth phosphate glasses. Am. J. Appl. Sci. 2(8), 1266–1269 (2005)

    Article  Google Scholar 

  27. K. Nanda, N. Berwal, R.S. Kundu, R. Punia, N. Kishore, Effect of doping of Nd3+ ions in BaO–TeO2–B2O3 glasses: a vibrational and optical study. J. Mol. Struct. 2015, 147–154 (1088)

    Google Scholar 

  28. Y.B. Saddeek, E.R. Shaaban, E.S. Moustafa, H.M. Moustafa, Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Phys. B 403, 2399–2407 (2008)

    Article  ADS  Google Scholar 

  29. N.F. Mott, E.A. Davis, Electronic process in the non crystalline materials, 2nd edn. (Clarendon Press/Oxford University, New York, 1979)

    Google Scholar 

  30. K. Annapurna, S. Buddhudu, Characterization of fluorophosphate optical glasses. J. Solid State Chem. 93, 454–460 (1991)

    Article  ADS  Google Scholar 

  31. A. Wagh, Y. Raviprakash, V. Upadhyaya, S.D. Kamath, Composition dependent structural and optical properties of PbF2–TeO2–B2O3–Eu2O3 glasses. Spectrochim. Acta A 151, 696–706 (2015)

    Article  Google Scholar 

  32. S. Inaba, S. Fujino, K. Morinaga, Young’s modulus and compositional parameters of oxide glasses. J. Am. Ceram. Soc. 82, 3501–3507 (1999)

    Article  Google Scholar 

  33. M. Abdel-Baki, F.A. Abdel-Wahab, F. El-Diasty, One-photon band gap engineering of borate glass doped with ZnO for photonics applications. J. Appl. Phys. 111, 073506–0735010 (2012)

    Article  ADS  Google Scholar 

  34. D.R. Lide (ed.), CRC handbook of chemistry and physics, 85th edn. (CRC Press, Boca Raton, 2004)

    Google Scholar 

  35. S.B. Mallur, T. Czarnecki, A. Adhikari, P.K. Babu, Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses. Mater. Res. Bull. 68, 27–34 (2015)

    Article  Google Scholar 

  36. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970)

    Article  ADS  Google Scholar 

  37. M. Farouk, A. Abd El-Maboud, M. Ibrahim, A. Ratep, I. Kashif, Optical properties of Lead bismuth borate glasses doped with neodymium oxide. Spectrochim. Acta A 149, 338–342 (2015)

    Article  Google Scholar 

  38. F. Ahmad, E. Hassan Aly, M. Atef, M.M. ElOkr, Study the influence of zinc oxide addition on cobalt doped alkaline earth borate glasses. J. Alloys Compd. 593, 250–255 (2014)

    Article  Google Scholar 

  39. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  40. Y. Chen, Q. Nie, T. Xu, S. Dai, X. Wang, X. Shen, A study of nonlinear optical properties in Bi2O3–WO3–TeO2 glasses. J. Non Cryst. Solids 354, 3468–3472 (2008)

    Article  ADS  Google Scholar 

  41. H. Mahr, Ultraviolet absorption of KI diluted in KCl crystals. Phys. Rev. 125, 1510–1516 (1962)

    Article  ADS  Google Scholar 

  42. F. Yakuphanoglu, M. Arslan, The fundamental absorption edge and optical constants of some charge transfer compounds. Opt. Mater. 27, 29–37 (2004)

    Article  ADS  Google Scholar 

  43. V. Kumar, J.K. Singh, Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phys. 48, 571–574 (2010)

    Google Scholar 

  44. T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi B 131, 415–427 (1985)

    Article  ADS  Google Scholar 

  45. V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 79, 1741–1745 (1996)

    Article  ADS  Google Scholar 

  46. R.R. Reddy, Y.N. Ahammed, K.R. Gopal, D.V. Raghuram, Optical electronegativity and refractive index of materials. Opt. Mater. 10, 95–100 (1998)

    Article  ADS  Google Scholar 

  47. X. Zhao, X. Wang, H. Lin, Z. Wang, A new approach to estimate refractive index, electronic polarizability, and optical basicity of binary oxide glasses. Phys. B 403, 2450–2460 (2008)

    Article  ADS  Google Scholar 

  48. P. Chimalawong, J. Kaewkhao, C. Kedkaew, P. Limsuwan, Optical and electronic polarizability investigation of Nd3+-doped soda-lime silicate glasses. J. Phys. Chem. Solids 71, 965–970 (2010)

    Article  ADS  Google Scholar 

  49. E.A. Moelwyn-Hughes, Physical chemistry (Pergamon, London, 1961)

    Google Scholar 

  50. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength (review). J. Univ. Chem. Technol. Metall. 45, 219–250 (2010)

    Google Scholar 

  51. X. Zhao, X. Wang, H. Lin, Z. Wang, Electronic polarizability and optical basicity of lanthanide oxides. Phys. B 392, 132–136 (2007)

    Article  ADS  Google Scholar 

  52. S.S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Optical properties of alkaline earth borate glasses. Int. J. Eng. Sci. Technol. 4, 25–35 (2012)

    Google Scholar 

  53. S.S. Sastry, B.R. Venkateswara Rao, Structural and optical properties of vanadium doped alkaline earth lead zinc phosphate glasses. Indian J. Pure Appl. Phys. 52, 491–498 (2014)

    Google Scholar 

  54. J.A. Duffy, Electronic polarisability and related properties of the oxide ion. Phys. Chem. Glasses 30, 1–4 (1989)

    Google Scholar 

  55. E.S. Yousef, M.M. Elokr, Y.M. AbouDeif, Optical, elastic properties and DTA of TNZP host tellurite glasses doped with Er3+ ions. J. Mol. Struct. 1108, 257–262 (2016)

    Article  ADS  Google Scholar 

  56. V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid Stat. Chem. 163, 100–112 (2002)

    Article  ADS  Google Scholar 

  57. J. Yamashita, T. Kurosawa, The theory of the dielectric constant of ionic crystals III. J. Phys. Soc. Jpn. 10, 610–633 (1955)

    Article  ADS  Google Scholar 

  58. U.C. Dikshit, M. Kumar, Analysis of electronic polarizabilities in ionic crystals. Phys. Status Solidi (b) 165, 599–610 (1991)

    Article  ADS  Google Scholar 

  59. V. Dimitrov, T. Komatsu, Effect of interionic interaction on the electronic polarizability, optical basicity and binding energy of simple oxides. J. Ceram. Soc. Jpn. 107, 1012–1018 (1999)

    Article  Google Scholar 

  60. V. Dimitrov, T. Komatsu, Interionic interactions, electronic polarizability and optical basicity of oxide glasses. J. Ceram. Soc. Jpn. 108, 330–338 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out using the National Research Centre facilities at the Spectroscopy Department, Physics Division, 33 El Buhouth St., Dokki, 12311Giza, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Algradee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algradee, M.A., Sultan, M., Samir, O.M. et al. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium–zinc–phosphate glasses. Appl. Phys. A 123, 524 (2017). https://doi.org/10.1007/s00339-017-1136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1136-6

Navigation