Skip to main content
Log in

Laser-assisted fabrication and size distribution modification of colloidal gold nanostructures by nanosecond laser ablation in different liquids

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study presents results on pulsed laser ablation of gold target immersed in different liquids. In the experiments chloroform, toluene and ethanol are used as liquid media for the laser ablation. Two different wavelengths: the fundamental (1064 nm) and second harmonic (532 nm) of a Nd:YAG laser, are utilized to produce various colloids. The optical properties of the colloids were evaluated by optical transmittance measurements in the UV–Vis spectral range. The morphology of the colloidal nanoparticles created and the evaluation of their size distribution are investigated by transmission electron microscopy. The selected area electron diffraction is employed for chemical phase identification of the created nanostructures. Ablation in chloroform resulted in formation of spherical and spheroidal gold nanoparticles with the similar mean size at both laser wavelengths used—11.5 nm at 1064 and 9.3 nm at 532 nm. Nanoparticles with smaller mean size (below 5 nm) in the case of ablation in toluene were observed. Spherical nanoparticles with mean diameter of 7.7 nm produced by 1064 nm and thin elongated nanostructures with thickness of about 5 nm using 532 nm are observed in the case of ablation in ethanol. An additional laser irradiation of the colloids demonstrated the changing of the optical properties and size distribution of the nanostructures produced by ablation in ethanol and chloroform. The irradiation of toluene-based colloid does not induce observable change of the colloid properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  Google Scholar 

  2. S.J. Guo, E.K. Wang, Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 598, 181–192 (2007)

    Article  Google Scholar 

  3. E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782 (2009)

    Article  Google Scholar 

  4. S.H. Radwan, H.M.E. Azzazy, Gold nanoparticles for molecular diagnostics. Exp. Rev. Mol. Diagn. 9, 511–524 (2009)

    Article  Google Scholar 

  5. W.R. Algar, M. Massey, U.J. Krull, The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. Trends Anal. Chem. 28, 292–306 (2009)

    Article  Google Scholar 

  6. W.E. Bawarski, E. Chidlowsky, D.J. Bharali, S.A. Mousa, Emerging nano-pharmaceuticals. Nanomed. Nanotechnol. Biol. Med. 4, 273–282 (2008)

    Article  Google Scholar 

  7. V.V. Mody, R. Siwale, A. Singh, H.R. Mody, Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2, 282–289 (2010)

    Article  Google Scholar 

  8. C.F. Bohren, D.F. Hufman, Absorption and scattering of light by small particles (Wiley, New York, 1983)

    Google Scholar 

  9. U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  10. M.H. Abdellatif, S. Ghosh, I. Liakos, A. Scarpellini, S. Marras, A. Diaspro, M. Salerno, Effect of nanoscale size and medium on metal work function in oleylamine-capped gold nanocrystals. J. Phys. Chem. Solids 89, 7–14 (2016)

    Article  ADS  Google Scholar 

  11. D. Pissuwan, T. Niidome, M.B. Cortie, The forth-coming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 149, 65–71 (2011)

    Article  Google Scholar 

  12. P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315 (2008)

    Article  Google Scholar 

  13. D.T. Nguyen, D.-J. Kim, K.-S. Kim, Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron 42, 207–227 (2011)

    Article  Google Scholar 

  14. A.B. Etame, C.A. Smith, W.C.W. Chan, J.T. Rutka, Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature, nanomedicine: nanotechnology. Biol. Med. 7, 992–1000 (2011)

    Google Scholar 

  15. M. Shakibaie, H. Forootanfar, K. Mollazadeh-Moghadam, Z. Bagherzadeh, N. Nafissi-Varcheh, A.R. Shahverdi, M.A. Faramarzi, Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol. Appl. Biochem. 57, 71–75 (2010)

    Article  Google Scholar 

  16. Y.L. Luo, Y.S. Shiao, Y.F. Huang, Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5, 7796–7804 (2011)

    Article  Google Scholar 

  17. M. Vinod, K.G. Gopchandran, Au, Ag and Au: Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates. Prog. Nat. Sci.: Mater. Int. 24, 569–578 (2014)

    Article  Google Scholar 

  18. C. Toccafondi, S. Thorat, R. La Rocca, A. Scarpellini, M. Salerno, S. Dante, G. Das, Multifunctional substrates of thin porous alumina for cell biosensors. J. Mater. Sci.: Mater. Med. 25, 2411–2420 (2014)

    Google Scholar 

  19. D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian, Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150, 412–417 (2003)

    Article  Google Scholar 

  20. D.T. Thompson, Using gold nanoparticles for catalysis. Nano Today 2, 40–43 (2007)

    Article  Google Scholar 

  21. F. Schulz, T. Homolka, N.G. Bastus, V. Puntes, H. Weller, T. Vossmeyer, Little adjustments significantly improve the turkevich synthesis of gold nanoparticles. Langmuir 30, 10779–10784 (2014)

    Article  Google Scholar 

  22. P.R. Teixeira, M.S.C. Santos, A.L.G. Silva, S.N. Báo, R.B. Azevedo, M.J.A. Sales, L.G. Paterno, Photochemically-assisted synthesis of non-toxic and biocompatible gold nanoparticles. Coll. Surf. B 148, 317–323 (2016)

    Article  Google Scholar 

  23. S. Singh, D.V.S. Jain, M.L. Singla, One step electrochemical synthesis of gold-nanoparticles–polypyrrole composite for application in catechin electrochemical biosensor. Anal. Methods 5, 1024–1032 (2013)

    Article  Google Scholar 

  24. R.A.B. Alvarez, M. Cortez-Valadez, L.O.N. Bueno, R.B. Hurtado, O. Rocha-Rocha, Y. Delgado-Beleño, C.E. Martinez-Nuñez, L.I. Serrano-Corrales, H. Arizpe-Chávez, M. Flores-Acosta, Vibrational properties of gold nanoparticles obtained by green synthesis. Physica E 84, 191–195 (2016)

    Article  ADS  Google Scholar 

  25. G. Compagnini, A. Scalisi, O. Puglisi, C. Spinella, Synthesis of gold colloids by laser ablation in thiol alkane solutions. J. Mater. Res. 19, 2795–2798 (2004)

    Article  ADS  Google Scholar 

  26. H. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater. 22, 1333–1353 (2012)

    Article  Google Scholar 

  27. V. Amendola, M. Meneghetti, What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 15, 3027–3046 (2013)

    Article  Google Scholar 

  28. R.G. Nikov, A.S. Nikolov, N.N. Nedyalkov, P.A. Atanasov, M.T. Alexandrov, D.B. Karashanova, Processing condition influence on the characteristics of gold nanoparticles produced by pulsed laser ablation in liquids. Appl. Surf. Sci. 274, 105–109 (2013)

    Article  ADS  Google Scholar 

  29. A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, M. Suzuki, Synthesis of silver nanoparticles by laser ablation in pure water. Appl. Phys. A 79, 803–806 (2004)

    Article  ADS  Google Scholar 

  30. R. Intartaglia, M. Rodio, M. Abdellatif, M. Prato, M. Salerno, Extensive characterization of oxide-coated colloidal gold nanoparticles synthesized by laser ablation in liquid. Materials 9, 775 (2016)

    Article  ADS  Google Scholar 

  31. G. Compagnini, A.A. Scalisi, O. Puglisi, Production of gold nanoparticles by laser ablation in liquid alkanes. J. Appl. Phys. 94, 7874–7877 (2003)

    Article  ADS  Google Scholar 

  32. V. Amendola, S. Polizzi, M. Meneghetti, Laser ablation synthesis of gold nanoparticles in organic solvents. J. Phys. Chem. B 110, 7232–7237 (2006)

    Article  Google Scholar 

  33. V. Amendola, S. Polizzi, M. Meneghetti, Laser ablation synthesis of silver nanoparticles embedded in graphitic carbon matrix. Sci. Adv. Mater. 4, 497–500 (2012)

    Article  Google Scholar 

  34. G. Compagnini, A.A. Scalisi, O. Puglisi, Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film. Phys. Chem. Chem. Phys. 4, 2787–2791 (2002)

    Article  Google Scholar 

  35. V. Amendola, G.A. Rizzi, S. Polizzi, M. Meneghetti, Synthesis of gold nanoparticles by laser ablation in toluene: quenching and recovery of the surface plasmon absorption. J. Phys. Chem. B 109, 23125–23128 (2005)

    Article  Google Scholar 

  36. T. Mortier, T. Verbiest, A. Persoons, Laser ablation of gold in chloroform solutions of cetyltrimethylammoniumbromide. Chem. Phys. Lett. 382, 650–653 (2003)

    Article  ADS  Google Scholar 

  37. V. Amendola, G. Mattei, C. Cusan, M. Prato, M. Meneghetti, Fullerene non-linear excited state absorption induced by gold nanoparticles light harvesting. Synth. Met. 155, 283–286 (2005)

    Article  Google Scholar 

  38. S.-P. Chen, H.-L. Chiu, P.-H. Wang, Y.-C. Liao, Inkjet printed conductive tracks for printed electronics. ECS J. Solid State Sci. Technol. 4, 3026–3033 (2015)

    Article  Google Scholar 

  39. M.J. Beliatis, S.J. Henley, S. Han, K. Gandhi, A.A.D.T. Adikaari, E. Stratakis, E. Kymakis, S.R.P. Silva, Organic solar cells with plasmonic layers formed by laser nanofabrication. Phys. Chem. Chem. Phys. 15, 8237–8244 (2013)

    Article  Google Scholar 

  40. J. Macicek, Adv. X-ray Anal. 35, 687–691 (1992)

    Google Scholar 

  41. A.O. Simm, C.E. Banks, S.J. Wilkins, N.G. Karousos, J. Davis, R.G. Compton, A comparison of different types of gold–carbon composite electrode for detection of arsenic(III). Anal. Bioanal. Chem. 381, 979–985 (2005)

    Article  Google Scholar 

  42. H. Sakai, Surface-induced melting of small particles. Surf. Sci. 351, 285–291 (1996)

    Article  ADS  Google Scholar 

  43. A.S. Nikolov, R.G. Nikov, N.N. Nedyalkov, P.A. Atanasov, M.T. Alexandrov, D.B. Karashanova, Modification of the silver nanoparticles size-distribution by means of laser light irradiation of their water suspensions. Appl. Surf. Sci. 280, 55–59 (2013)

    Article  ADS  Google Scholar 

  44. J. Liao, Y. Zhang, W. Yu, L. Xu, C. Ge, J. Liu, N. Gu, Linear aggregation of gold nanoparticles in ethanol. Colloid. Surf. A 223, 177–183 (2003)

    Article  Google Scholar 

  45. P. Boyer, M. Meunier, Modeling solvent influence on growth mechanism of nanoparticles (Au, Co) synthesized by surfactant free laser processes. J. Phys. Chem. C 116, 8014–8019 (2012)

    Article  Google Scholar 

  46. G. Cristoforetti, E. Pitzalis, R. Spiniello, R. Ishak, F. Giammanco, M. Muniz-Miranda, S. Caporali, Physico-chemical properties of Pd nanoparticles produced by pulsed laser ablation in different organic solvents. Appl. Surf. Sci. 258, 3289–3297 (2012)

    Article  ADS  Google Scholar 

  47. E. Giorgetti, M. Muniz-Miranda, P. Marsili, D. Scarpellini, F. Giammanco, Stable gold nanoparticles obtained in pure acetone by laser ablation with different wavelengths. J. Nanopart. Res. 14, 1–13 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the project DFNP-185 “Preparation of colloids by laser ablation in liquids for printing of two-dimensional and three-dimensional structures” under scientific program “Assistance for young scientists”, BAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Nikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikov, R.G., Nedyalkov, N.N., Atanasov, P.A. et al. Laser-assisted fabrication and size distribution modification of colloidal gold nanostructures by nanosecond laser ablation in different liquids. Appl. Phys. A 123, 490 (2017). https://doi.org/10.1007/s00339-017-1105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1105-0

Navigation