Skip to main content
Log in

UV laser direct writing of 2D/3D structures using photo-curable polydimethylsiloxane (PDMS)

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Additive manufacturing with UV curable polydimethylsiloxane (PDMS) was achieved using UV laser direct writing. In these experiments, UV curable PDMS was locally polymerized to fabricate 1D and 2D single layer structures, as well as 3D multilayer structures. Line arrays with line widths between 18 and 47 µm were produced, and it was observed that good stability and repeatability of the photo-polymerization in the UV curable PDMS was possible. The 3D structures demonstrated the absorption depth of the UV curable PDMS, which was deeper than 3 mm, and enabled the fabrication of 3.1 mm tall structures with an aspect ratio of 2 in only a single layer. The 3D structures were sufficiently strong to show elastic properties. All surfaces were smooth and transparent. In addition, UV laser direct writing of UV curable PDMS realized patterning with uniform resolutions at each layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. M. Takai, T. Shirai, K. Ishihara, J. Photopolym. Sci. Technol. 24, 597 (2011)

    Article  Google Scholar 

  2. N. Ishikawa, Y. Hanada, I. Ishikawa, K. Sugioka, K. Midorikawa, Appl. Phys. B 119, 503 (2015)

    Article  ADS  Google Scholar 

  3. B. Lin, Y. Yang, C. Ho, H. Yang, H. Wang, Sensors 14, 2967 (2014)

    Article  Google Scholar 

  4. D. Lu, Y. Zhang, D. Han, H. Wang, H. Xia, Q. Chen, J. Mater. Chem. C 3, 1751 (2015)

    Article  Google Scholar 

  5. J. Ward, Y. Yang, S. Chormaic, Proc. SPIE 9343, 934314 (2015)

    Article  Google Scholar 

  6. Y. Lin, J. Chou, J. Adhes. Sci. Technol. 30, 1310 (2016)

    Article  Google Scholar 

  7. T. Nargang, L. Brockmann, P. Nikolov, D. Schild, D. Helmer, N. Keller, Lab Chip 14, 2698 (2014)

    Article  Google Scholar 

  8. D. Duffy, J. McDonald, O. Schueller, G. Whitesides, Anal. Chem. 70, 4974 (1998)

    Article  Google Scholar 

  9. J. Park, B. Vahidi, A. Taylor, S. Rhee, N. Jeon, Nat. Protoc. 1, 2128 (2006)

    Article  Google Scholar 

  10. S. Lee, M. Goedert, M. Matyska, E. Ghandehari, M. Vijay, J. Pesek, J. Micromech. Microeng. 18, 025026 (2008)

    Article  ADS  Google Scholar 

  11. M. Kant, S. Shinde, D. Bodas, K. Patil, V. Sathe, K. Adhi, S. Gosavi, Appl. Surf. Sci. 314, 292 (2014)

    Article  ADS  Google Scholar 

  12. S. Waheed, J. Cabot, N. Macdonald, T. Lewis, R. Guijt, B. Paull, M. Breadmore, Lab Chip 16, 1993 (2016)

    Article  Google Scholar 

  13. C. Coenjarts, C. Ober, Chem. Mater. 16, 5556 (2004)

    Article  Google Scholar 

  14. T. Hasegawa, K. Oishi, S. Maruo, in Proceedings of IEEE conference on micro-nanomechatronics and human science, 158 (2006)

  15. H. Selvaraj, B. Tan, K. Venkatakrishnan, J. Micromech. Microeng. 21, 075018 (2011)

    Article  ADS  Google Scholar 

  16. S. Rekštytė, M. Malinauskas, S. Juodkazis, Opt. Express 21, 17028 (2013)

    Article  ADS  Google Scholar 

  17. C. Sones, I. Katis, B. Mills, M. Feinaeugle, A. Mosayyebi, J. Butement, R. Eason, Appl. Surf. Sci. 298, 125 (2014)

    Article  ADS  Google Scholar 

  18. J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, R. Mačiulaitis, Biofabrication 23, 015015 (2015)

    Article  ADS  Google Scholar 

  19. K. Tsougeni, A. Tserepi, E. Gogolides, Microelectron. Eng. 84, 1104 (2007)

    Article  Google Scholar 

  20. K. Goswami, A. Skov, A. Daugaard, Chem. Eur. J. 20, 9230 (2014)

    Article  Google Scholar 

  21. N. Chidambaram, R. Kirchner, M. Altana, H. Schift, J. Vac. Sci. Technol. B 34, 06K401 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Shin-Etsu Silicones Europe B.V. for providing the PDMS sample and Katie Xu for supporting the technical discussion. This research was supported in a part of joint research projects by “Projektbezogener Personenaustausch mit Japan” (DAAD-JSPS) Joint Research Program (Project 57245147). The authors acknowledge financial support in the frame of the 3D-PolySPRINT Project (BMBF FKZ 13N13567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotaro Obata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obata, K., Slobin, S., Schonewille, A. et al. UV laser direct writing of 2D/3D structures using photo-curable polydimethylsiloxane (PDMS). Appl. Phys. A 123, 495 (2017). https://doi.org/10.1007/s00339-017-1104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1104-1

Navigation