Advertisement

Applied Physics A

, 123:486 | Cite as

Effect of ambient temperature on the efficiency of the PCPDTBT: PC71BM BHJ solar cells

  • Zubair AhmadEmail author
  • Farid Touati
  • Fahmi F. Muhammad
  • Mansoor Ani Najeeb
  • R. A. Shakoor
Article

Abstract

In this research article, the influence of environment temperature on the performance of the organic bulk heterojunction organic solar cells has been investigated. We describe the effect of ambient temperature on the efficiency of poly-[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta-[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and [6, 6]-phenylC71-butyric-acid-methyl-ester (PC71BM)-based bulk heterojunction (BHJ) organic solar cells. The current–voltage characteristics of the ITO/PEDOT:PSS/PCPDTBT:PC71BM/Al solar cells are recorded in the temperature range of 25–60 °C under 100 mW/cm2 solar irradiation. The short-circuit current (J sc) of the solar cells increased from 4.28 to 9.23 mAcm−2 when the temperature elevated from 25 to 55 °C. However, the open-circuit voltage (V oc) and fill factor (FF) of the cells almost remained unchanged over the whole investigated temperature range. The values of V oc and FF are found to be 0.58 ± 01 and 0.60 ± 0.12 V, respectively. The results clearly indicate that the maximum efficiency of the ITO/PEDOT:PSS/PCPDTBT:PC71BM/Al solar cells can be achieved in the range of 52–58 °C.

Notes

Acknowledgments

This publication was made possible by PDRA Grant No. PDRA1-0117-14109 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.

Compliance with ethical standards

Conflict interest

The authors declare no competing financial interests.

References

  1. 1.
    T. Ameri, N. Li, C.J. Brabec, High efficient organic tandem solar cells: Follow up review. Energy Environ. Sci. 6, 2390–2413 (2013)CrossRefGoogle Scholar
  2. 2.
    ScienceDaily, World record solar cell with 44.7% efficiency, (2013) http://www.sciencedaily.com/releases/2013/09/130923204214.htm. Accessed 24 Sep 2013
  3. 3.
    C.J. Brabec, Organic photovoltaics: technology and market. Sol. Energy Mater. Sol. Cells 83, 273–292 (2004)CrossRefGoogle Scholar
  4. 4.
    C.J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci, Organic photovoltaics: concepts and realization (Springer Science & Business Media, Berlin, 2013)Google Scholar
  5. 5.
    S.B. Darling, F. You, The case for organic photovoltaics. Rsc Adv. 3, 17633–17648 (2013)CrossRefGoogle Scholar
  6. 6.
    K.A. Mazzio, C.K. Luscombe, The future of organic photovoltaics. Chem. Soc. Rev. 44, 78–90 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010)CrossRefGoogle Scholar
  8. 8.
    C.M. MacNeill, E.D. Peterson, R.E. Noftle, D.L. Carroll, R.C. Coffin, A cyclopentadithiophene/thienopyrroledione-based donor-acceptor copolymer for organic solar cells. Synth. Met. 161, 1137–1140 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Lin, Y. Li, X. Zhan, Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 41, 4245–4272 (2012)CrossRefGoogle Scholar
  10. 10.
    K.R. Graham, C. Cabanetos, J.P. Jahnke, M.N. Idso, A. El Labban, G.O. Ngongang Ndjawa, T. Heumueller, K. Vandewal, A. Salleo, B.F. Chmelka, Importance of the donor: fullerene intermolecular arrangement for high-efficiency organic photovoltaics. J. Am. Chem. Soc. 136, 9608–9618 (2014)CrossRefGoogle Scholar
  11. 11.
    K. Sun, Z. Xiao, S. Lu, W. Zajaczkowski, W. Pisula, E. Hanssen, J.M. White, R.M. Williamson, J. Subbiah, J. Ouyang, A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun. 6, 6013 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Abdullah, Z. Ahmad, K. Sulaiman, The impact of thermal annealing to the efficiency and stability of organic solar cells based on PCDTBT: PC 71 BM. Proc. Soc. Behav. Sci. 195, 2135–2142 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Huo, T. Liu, X. Sun, Y. Cai, A.J. Heeger, Y. Sun, Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv. Mater. 27, 2938–2944 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Zhao, Y. Li, H. Lin, Y. Liu, K. Jiang, C. Mu, T. Ma, J.Y.L. Lai, H. Hu, D. Yu, High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy Environ. Sci. 8, 520–525 (2015)CrossRefGoogle Scholar
  15. 15.
    D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, J. Hummelen, Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells. J. Appl. Phys. 93, 3376–3383 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M. Gerhard, A.P. Arndt, I.A. Howard, A. Rahimi-Iman, U. Lemmer, M. Koch, Temperature-and Energy-dependent separation of charge-transfer states in PTB7-based organic solar cells. J. Phys. Chem. C 119, 28309–28318 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H. Egelhaaf, D. Brida, G. Cerullo, G. Lanzani, Hot exciton dissociation in polymer solar cells. Nat. Mater. 12, 29–33 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    A. Aberle, S. Dubey, J.N. Sarvaiya, B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—a review. Energy Proc. 33, 311–321 (2013). (PV Asia Pacific Conference 2012 ) CrossRefGoogle Scholar
  19. 19.
    S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100 percent. Nat. Photonics 3, 297–302 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, M. Leclerc, Toward a rational design of poly(2, 7-carbazole) derivatives for solar cells. J. Am. Chem. Soc. 130, 732–742 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Morana, M. Wegscheider, A. Bonanni, N. Kopidakis, S. Shaheen, M. Scharber, Z. Zhu, D. Waller, R. Gaudiana, C. Brabec, Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic applications. Adv. Funct. Mater. 18, 1757–1766 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Kurpiers, J. Kniepert, S. Inal, P. Pingel, K. Fostiropoulos, N. Koch, Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells. J. Am. Chem. Soc. 134, 14932–14944 (2012)CrossRefGoogle Scholar
  23. 23.
    D.H. Wang, J.K. Kim, J.H. Seo, O.O. Park, J.H. Park, Stability comparison: a PCDTBT/PC 71 BM bulk-heterojunction versus a P3HT/PC 71 BM bulk-heterojunction. Sol. Energy Mater. Sol. Cells 101, 249–255 (2012)CrossRefGoogle Scholar
  24. 24.
    N. Blouin, A. Michaud, M. Leclerc, A low-bandgap poly(2, 7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 19, 2295–2300 (2007)CrossRefGoogle Scholar
  25. 25.
    F. Laquai, D. Andrienko, C. Deibel, D. Neher, Charge carrier generation, recombination, and extraction in polymer-fullerene bulk heterojunction organic solar cells, elementary processes in organic photovoltaics (Springer, Berlin, 2017), pp. 267–291Google Scholar
  26. 26.
    J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497–500 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Gao, M. Liu, Y. Zhang, Z. Liu, Y. Yang, L. Zhao, Recent development on narrow bandgap conjugated polymers for polymer solar cells. Polymers 9, 39 (2017)CrossRefGoogle Scholar
  28. 28.
    W. Ge, R.D. McCormick, G. Nyikayaramba, A.D. Stiff-Roberts, Bulk heterojunction PCPDTBT:PC71BM organic solar cells deposited by emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation. Appl. Phys. Lett. 104, 223901 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    D. Fazzi, G. Grancini, M. Maiuri, D. Brida, G. Cerullo, G. Lanzani, Ultrafast internal conversion in a low band gap polymer for photovoltaics: experimental and theoretical study. Phys. Chem. Chem. Phys. 14, 6367–6374 (2012)CrossRefGoogle Scholar
  30. 30.
    D. Jarzab, F. Cordella, J. Gao, M. Scharber, H.J. Egelhaaf, M.A. Loi, Low-temperature behaviour of charge transfer excitons in narrow-bandgap polymer-based bulk heterojunctions. Adv. Energy Mater. 1, 604–609 (2011)CrossRefGoogle Scholar
  31. 31.
    E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83, 614–624 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    H.A. Zondag, Flat-plate PV-Thermal collectors and systems: a review. Renew. Sustain. Energy Rev. 12, 891–959 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Center for Advanced MaterialsQatar UniversityDohaQatar
  2. 2.Department of Electrical EngineeringCollege of Engineering, Qatar UniversityDohaQatar
  3. 3.Soft Materials and Devices Laboratory, Department of Physics, Faculty of Science and HealthKoya UniversityKoya 45Iraq

Personalised recommendations