Skip to main content
Log in

Electronically tunable microstrip bandstop filters using a varactor-loaded open ring resonator (VLORR)

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A compact microstrip bandstop filter (BSF) with a wide electronically tunable frequency range and a constant absolute bandwidth is presented. It consists of an open ring resonator (ORR) loaded with a varactor diode and connected to a section of a microstrip transmission line. As a reverse bias is applied to the proposed varactor-loaded ORR (VLORR), the value of the resulting capacitor is controlled and the resonant frequency can be varied to the desired position. The measured tunable BSF achieves 92.6 \(\,\%\) tuning range with a constant 15 dB absolute bandwidth of 0.27 GHz and a minimum rejection level of 37 dB. This reconfigurable microstrip BSF can be useful in microwave communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. I. Reines, S.J. Park, G. Rebeiz, Compact low-loss tunable X-band bandstop filter with miniature RF-MENS switches. IEEE Trans. Microw. Theory Tech. 58, 1887–1895 (2010)

    Article  ADS  Google Scholar 

  2. W.J. Kim, W. Chang, S.B. Qadri, H.D. Wu, J.M. Pond, S.W. Kirchoefer, H.S. Newman, D.B. Chrisey, J.S. Horwitz, Electrically and magnetically tunable microwave device using (Ba, Sr) TiO\(_3\)/Y\(_3\)Fe\(_5\)O\(_{12}\) multilayer. Appl. Phys. A 71, 1–4 (2000)

    Article  ADS  Google Scholar 

  3. N. Tentilier, F. Krasinski, R. Sauleau, B. Splingard, H. Lhermite, Ph Coquet, A liquid-crystal, tunable, ultra-thin Fabry-Perot resonator in Ka band. IEEE Antennas Wirel. Propag. Lett. 8, 701–704 (2009)

    Article  ADS  Google Scholar 

  4. Y. Peng, T. Wang, W. Jiang, B.M. Farid Rahman, T. Xia, G. Wang, Electrically tunable bandpass filter with patterned permalloy thin-film-enabled engineered substrate. IEEE Trans. Magn., 51, 2006104-1–2006104-4 (2015)

  5. Y. Wang, J. Yin, G. Yuan, X. Dong, C. Du, Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna. Appl. Phys. A 104, 1243–1247 (2011)

    Article  ADS  Google Scholar 

  6. I.C. Hunter, J.D. Rhodes, Electronically tunable microwave bandstop filters. IEEE Trans. Microw. Theory Tech. 30, 1361–1367 (1982)

    Article  ADS  Google Scholar 

  7. X.Y. Zhang, C.H. Chan, Q. Xue, B.-J. Hu, RF tunable bandstop filters with constant bandwidth based on a doublet configuration. IEEE Trans. Ind. Electron. 59, 1257–1265 (2012)

    Article  Google Scholar 

  8. C.-W. Tang, W.-C. Chen, A compact tunable notch filter with wide constant absolute bandwidth. IEEE Microw. Wirel. Compon. Lett. 25, 151–153 (2015)

    Article  Google Scholar 

  9. I. Gil, J. Bonache, J. Garca, F. Martin, Tunable metamaterial transmission lines based on varactor loaded split ring resonators. IEEE Trans. Microw. Theory Tech. 54, 2665–2674 (2006)

    Article  ADS  Google Scholar 

  10. A.L. Borja, J. Carbonell, J.D. Martnez, V.E. Boria, D. Lippens, A controllable bandwidth filter using varactor-loaded metamaterial-inspired transmission lines. IEEE Antennas Wirel. Propag. Lett. 10, 1575–1578 (2011)

    Article  ADS  Google Scholar 

  11. K. Chakrabarty, Compact tunable bandstop filters using defected microstrip structure for multi-standard wireless systems. European Microwave Conference (EuMC), 1031–1034 (2013)

  12. T. Nesimoglu, C. Sabah, A tunable metamaterial resonator using varactor diodes to facilitate the design of reconfigurable microwave circuits. IEEE Trans. Circuits Syst. II, Exp. Briefs 63, 89–93 (2016)

    Article  Google Scholar 

  13. J.-S. Hong, M.J. Lancaster, Microstrip Filters for RF/Microw. Appl. (John Willey & Sons, New York, 2001)

    Book  Google Scholar 

  14. J.B. Pendry, A.J. Holden, D.J. Ribbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  ADS  Google Scholar 

  15. A. Vélez, F. Aznar, M. Durn-Sindreu, J. Bonache, F. Martn, Stop-band and band-pass filters in coplanar waveguide technology implemented by means of electrically small metamaterial-inspired open resonators. IET Microw. Antennas Propag. 4, 712–716 (2010)

    Article  Google Scholar 

  16. J.D. Ruiz, J. Hinojosa, A. Alvarez-Melcon, Microstrip notch filters based on open interconnected split ring resonators (OISRRs). Appl. Phys. A 112, 263–267 (2013)

    Article  ADS  Google Scholar 

  17. J. Martel, R. Marqués, F. Falcone, J.D. Baena, F. Medina, F. Martín, M. Sorolla, A new LC series element for compact bandpass filter design. IEEE Microw. Wirel. Compon. Lett. 14, 210–212 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministerio de Economía y Competitividad, Fundación Séneca (Murcia) of Spain and European Regional Development Funds (TEC2013-47037-C05-5-R, TEC2016-75934-C04-4-R, and 19494-PI-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Hinojosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinojosa, J., Saura-Ródenas, A., Alvarez-Melcon, A. et al. Electronically tunable microstrip bandstop filters using a varactor-loaded open ring resonator (VLORR). Appl. Phys. A 123, 477 (2017). https://doi.org/10.1007/s00339-017-1094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1094-z

Navigation