Skip to main content

Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

Abstract

We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. J. Barnett, S. Miller, E. Pearce, Opt. Laser Technol. 38(4–6), 445 (2006). doi:10.1016/j.optlastec.2005.06.005

    ADS  Article  Google Scholar 

  2. L. Burgio, R.J.H. Clark, R.R. Hark, Proc. Natl. Acad. Sci. 107(13), 5726 (2010). doi:10.1073/pnas.0914797107

    ADS  Article  Google Scholar 

  3. J.K. Delaney, P. Ricciardi, L.D. Glinsman, M. Facini, M. Thoury, M. Palmer, E.R. De La Rie, Stud. Conserv. 59(2), 91 (2014). doi:10.1179/2047058412Y.0000000078

    Article  Google Scholar 

  4. A. Re, A.L. Giudice, D. Angelici, S. Calusi, L. Giuntini, M. Massi, G. Pratesi, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269(20), 2373 (2011). doi:10.1016/j.nimb.2011.02.070

    ADS  Article  Google Scholar 

  5. D. Angelici, A. Borghi, F. Chiarelli, R. Cossio, G. Gariani, A. Lo Giudice, A. Re, G. Pratesi, G. Vaggelli, Microsc. Microanal. 21(02), 526 (2015). doi:10.1017/S143192761500015X

    ADS  Article  Google Scholar 

  6. A.A. Gambardella, C.M. Schmidt Patterson, S.M. Webb, M.S. Walton, Microchem. J. 125, 299 (2016). doi:10.1016/j.microc.2015.11.030

    Article  Google Scholar 

  7. M. Aru, L. Burgio, M.S. Rumsey, J. Raman Spectrosc. 45(11–12), 1013 (2014). doi:10.1002/jrs.4469

    ADS  Article  Google Scholar 

  8. N. Salvadó, S. Butí, M.A.G. Aranda, T. Pradell, Anal. Methods 6(11), 3610 (2014). doi:10.1039/C4AY00424H

    Article  Google Scholar 

  9. S. Svarcova, D. Hradil, J. Hradilova, E. Koci, P. Bezdicka, Anal. Bioanal. Chem. 395(7), 2037 (2009). doi:10.1007/s00216-009-3144-7

    Article  Google Scholar 

  10. S. Svarcova, E. Koci, P. Bezdicka, D. Hradil, J. Hradilova, Anal. Bioanal. Chem. 398(2), 1061 (2010). doi:10.1007/s00216-010-3980-5

    Article  Google Scholar 

  11. S. Svarcová, Z. Cermáková, J. Hradilová, P. Bezdicka, D. Hradil, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 132, 514 (2014). doi:10.1016/j.saa.2014.05.022

    ADS  Article  Google Scholar 

  12. B.H. Berrie, M. Leona, R. McLaughlin, Herit. Sci. 4(1), 1 (2016). doi:10.1186/s40494-016-0070-9

    Article  Google Scholar 

  13. K. Trentelman, M. Bouchard, M. Ganio, C. Namowicz, C.S. Patterson, M. Walton, X-Ray Spectrom. 39(3), 159 (2010). doi:10.1002/xrs.1242

    Article  Google Scholar 

  14. G. Fortunato, A. Ritter, D. Fabian, Analyst 130(6), 898 (2005). doi:10.1039/B418105K

    ADS  Article  Google Scholar 

  15. J.E. Spangenberg, J.V. Lavric, N. Meisser, V. Serneels, Rapid Commun. Mass Spectrom. 24(19), 2812 (2010). doi:10.1002/rcm.4705

    Article  Google Scholar 

  16. L. Chiarantini, F. Gallo, V. Rimondi, M. Benvenuti, P. Costagliola, A. Dini, Archaeometry 57(5), 879 (2015). doi:10.1111/arcm.12146

    Article  Google Scholar 

  17. A. Duran, J.L. Perez-Rodriguez, T. Espejo, M.L. Franquelo, J. Castaing, P. Walter, Anal. Bioanal. Chem. 395(7), 1997 (2009). doi:10.1007/s00216-009-2992-5

    Article  Google Scholar 

  18. A. Duran, A. López-Montes, J. Castaing, T. Espejo, J. Archaeol. Sci. 45, 52 (2014). doi:10.1016/j.jas.2014.02.011

  19. P. Targowski, M. Pronobis-Gajdzis, A. Surmak, M. Iwanicka, E.A. Kaszewska, M. Sylwestrzak, Stud. Conserv. 60(S1), S167 (2015). doi:10.1179/0039363015Z.000000000221

    Article  Google Scholar 

  20. P. Ricciardi, S. Legrand, G. Bertolotti, K. Janssens, Microchem. J. 124, 785 (2015). doi:10.1016/j.microc.2015.10.020

    Article  Google Scholar 

  21. W. De Nolf, B. Vekemans, K. Janssens, G. Falkenberg, Pigment identification by scanning \({\mu }\)-xrf/\({\mu }\)-xrd. Tech. rep., Beamline L, HASYLAB at DESY, Hamburg (2006)

  22. S. Legrand, F. Vanmeert, G. Van der Snickt, M. Alfeld, W. De Nolf, J. Dik, K. Janssens, Herit. Sci. 2(1), 13 (2014). doi:10.1186/2050-7445-2-13

    Article  Google Scholar 

  23. E. Dooryhée, M. Anne, I. Bardiès, J.L. Hodeau, P. Martinetto, S. Rondot, J. Salomon, G. Vaughan, P. Walter, Appl. Phys. A 81(4), 663 (2005). doi:10.1007/s00339-005-3281-6

    ADS  Article  Google Scholar 

  24. W. De Nolf, J. Dik, G. Van der Snickt, A. Wallert, K. Janssens, J. Anal. At. Spectrom. 26(5), 910 (2011). doi:10.1039/c0ja00255k

    Article  Google Scholar 

  25. K. Trentelman, C.S. Patterson, N. Turner, in Handheld XRF for art and archaeology, ed. by A.N. Shugar, J.L. Mass, no. 3 in Studies in archaeological sciences (Leuven, Leuven University Press, 2012), chap. 5, pp. 159–190

  26. V. Solé, E. Papillon, M. Cotte, P. Walter, J. Susini, Spectrochim. Acta Part B At. Spectrosc. 62(1), 63 (2007). doi:10.1016/j.sab.2006.12.002

    ADS  Article  Google Scholar 

  27. R. Kirkham, P.A. Dunn, A.J. Kuczewski, D.P. Siddons, R. Dodanwela, G.F. Moorhead, C.G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D.J. Paterson, M.D. de Jonge, D.L. Howard, M. Küsel, J. McKinlay, AIP Conf. Proc. 1234, 240 (2010). doi:10.1063/1.3463181

    ADS  Article  Google Scholar 

  28. C. Ryan, R. Kirkham, R. Hough, G. Moorhead, D. Siddons, M. de Jonge, D. Paterson, G. De Geronimo, D. Howard, J. Cleverley, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 619(1–3), 37 (2010). doi:10.1016/j.nima.2009.11.035

  29. U. Bergmann, X-ray fluorescence imaging of the archimedes palimpsest: A technical summary. Tech. rep, SLAC National Accelerator Laboratory (2005)

  30. X-ray interactions with matter (2012). http://henke.lbl.gov/optical_constants/

  31. C. Ryan, D. Jamieson, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 77(1–4), 203 (1993). doi:10.1016/0168-583X(93)95545-G

    ADS  Article  Google Scholar 

  32. M. Alfeld, K. Janssens, J. Anal. At. Spectrom. 30(3), 777 (2015). doi:10.1039/C4JA00387J

    Article  Google Scholar 

  33. W. De Nolf, F. Vanmeert, K. Janssens, J. Appl. Crystallogr. 47(3), 1107 (2014). doi:10.1107/S1600576714008218

    Article  Google Scholar 

  34. R.T. Downs, M. Hall-Wallace, Am. Mineral. 88, 247 (2003)

    Article  Google Scholar 

  35. D.V. Thompson, The Materials and Techniques of Medieval Painting (Dover Publications, New York, 1956)

    Google Scholar 

  36. L. Pittwell, Chem. Geol. 12(1), 39 (1973). doi:10.1016/0009-2541(73)90026-0

    ADS  Article  Google Scholar 

  37. C. Cennini, Cennino Cennini’s Il libro dell’arte: a new English translation and commentary with Italian transcription (Archetype Publications Ltd, London, 2015). Translation and commentary by Lara Broecke

  38. M. Price, Leonardo 33(4), 281 (2000). doi:10.1162/002409400552667

    Article  Google Scholar 

  39. N.K. Turner, D. Oltrogge, Colour: the art & science of illuminated manuscripts (Harvey Miller Publishers, London, 2016), chap. Pigment recipes and model books: mechanisms for knowledge transmission and the training of manuscript illuminators. ISBN 978-1-909400-57-3

  40. A.J. Horowitz, K.A. Elrick, Appl. Geochem. 2(4), 437 (1987). doi:10.1016/0883-2927(87)90027-8

    Article  Google Scholar 

  41. I. Guagliardi, C. Apollaro, F. Scarciglia, R.D. Rosa, Biotechnol. Agron. Soc. Environ. 17(1), 43 (2013)

  42. S. Klein, C. Domergue, Y. Lahaye, G.P. Brey, H.M. von Kaenel, J. Iber. Geol. 35(1), 59 (2009)

    Google Scholar 

  43. S. Staude, W. Werner, T. Mordhorst, K. Wemmer, D.E. Jacob, G. Markl, Miner. Deposita 47(3), 251 (2012). doi:10.1007/s00126-011-0365-4

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Adam Smith and the Cornell University Landscapes and Objects Laboratory for the use of the pXRF system. The authors also thank the Cornell Library Conservation Laboratory for assistance preparing custom mounts for synchrotron measurements of the manuscript fragments. The authors are grateful to Mr. Frederik Vanmeert for his generous tutorial guidance in using XRDUA software, to Dr. Catherine Patterson for helpful conversations, and to Prof. Andrew Hicks and Prof. Nigel Palmer for offering their invaluable expertise. This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS) which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-1332208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louisa M. Smieska.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smieska, L.M., Mullett, R., Ferri, L. et al. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping. Appl. Phys. A 123, 484 (2017). https://doi.org/10.1007/s00339-017-1093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1093-0