Skip to main content

Advertisement

Log in

Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

There has been growing interest in transparent and flexible electronic devices such as wrist watch, cell phone, and so on. These devices need the power sources which also have transparent and flexible features. Here, we demonstrate a transparent and flexible energy storage device with outstanding electrochemical performance, high energy density, and super-long life based on ultrafine NiCo2O4 nanospheres which are synthesized by an innovative method concerning laser ablation in liquid and hydrothermal process. The ultrafine NiCo2O4 nanospheres provide high electrochemical activity and the synthesized colloidal solution is suitable for transparent devices. The transparent and flexible device shows a high specific capacitance of 299.7 F/g at the scan rate of 1 mV/s and a long cycling life of 90.4% retention rate after 10,000 cycles at a scan rate of 10 mV/s, which is superior to that of previously reported transparent and flexible energy storage device. In addition, an optical transmittance up to 55% at the wavelength of 550 nm is obtained, and the bending test shows that the bending angle makes no difference to the specific capacitance of the device. In addition, it shows an outstanding energy density of 10.41 Wh/kg. The integrated electrochemical performances of the device are good based on NiCo2O4 nanospheres. These findings make the ultrafine NiCo2O4 nanospheres being promising electrode materials for transparent and flexible energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010)

    Article  Google Scholar 

  2. E. Uchaker, G. Cao, Mesocrystals as electrode materials for lithium-ion batteries. Nano Today 9, 499–524 (2014)

    Article  Google Scholar 

  3. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  Google Scholar 

  4. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)

    Article  Google Scholar 

  5. P.C. Chen, G. Shen, S. Sukcharoenchoke, C. Zhou, Flexible and transparent supercapacitor based on IN2O3 nanowire/carbon nanotube heterogeneous films. Appl. Phys. Lett. 94, 15434–15439 (2009)

    Google Scholar 

  6. D. Wei, S.J. Wakeham, T.W. Ng, M.J. Thwaites, H. Brown, P. Beecher, Transparent, flexible and solid-state supercapacitors based on room temperature ionic liquid gel. Electrochem. Commun. 11, 2285–2287 (2009)

    Article  Google Scholar 

  7. J. Ge, G. Cheng, L. Chen, Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 3, 3084–3088 (2011)

    Article  ADS  Google Scholar 

  8. J.F. Li, S.L. Xiong, Y.R. Liu, Z.C. Ju, Y.T. Qian, High electrochemical performance of monodisperse NiCo2O2 mesoporous microspheres as an anode material for li-ion batteries. ACS Appl. Mater. Interface 5, 981–988 (2013)

    Article  Google Scholar 

  9. A. Shanmugavani, R.K. Selvan, Microwave assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3. Electrochim. Acta 189, 283–294 (2016)

    Article  Google Scholar 

  10. L. Huang, D.C. Chen, Y. Ding, S. Feng, Z.L. Wang, M.L. Liu, Nickel − cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13, 3135–3139 (2013)

    Article  ADS  Google Scholar 

  11. L. Qian, L. Gu, L. Yang, H. Yuan, D. Xiao, Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 5, 7388–7396 (2013)

    Article  ADS  Google Scholar 

  12. P.F. Ndione, A. Garcia, N.E. Widjonarko, A.K. Sigdel, K.X. Steirer, D.C. Olson, P.A. Parilla, D.S. Ginley, N.R. Armstong, R.E. Richards, E.L. Ratcliff, J.J. Berry, Highly-tunable nickel cobalt oxide as a low-temperature P-type contact in organic photovoltaic devices. Adv. Energy Mater. 3, 524–531 (2013)

    Article  Google Scholar 

  13. L.F. Hu, L.M. Wu, M.Y. Liao, X.H. Hu, X.S. Fang, Electrical transport properties of large, individual NiCo2O4 nanoplates. Adv. Funct. Mater. 22, 998–1004 (2012)

    Article  Google Scholar 

  14. T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 22, 347–351 (2010)

    Article  ADS  Google Scholar 

  15. J. Du, G. Zhou, H.M. Zhang, C. Cheng, J.M. Ma, W.F. Wei, L.B. Chen, T.H. Wang, Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5, 7405–7409 (2013)

    Article  Google Scholar 

  16. Z. Wang, X. Zhang, Z.S. Zhang, N.L. Qiao, Y. Li, Z.P. Hao, Hybrids of NiCo2O4 nanorods and nanobundles with graphene as promising electrode materials for supercapacitors. J. Colloid Interface Sci. 460, 303–309 (2015)

    Article  Google Scholar 

  17. J.G. Kim, D.L. Pugmire, D. Battaglia, M.A. Langell, Analysis of the NiCo2O4 Spinel surface with Auger and X-ray photoelectron spectroscopy. Appl. Surf. Sci. 165, 70–84 (2000)

    Article  ADS  Google Scholar 

  18. B. Cui, H. Lin, Y.Z. Liu, J.B. Li, P. Sun, X.C. Zhao, C.J. Liu, Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets. J. Phys. Chem. C. 113, 14083–14087 (2009)

    Article  Google Scholar 

  19. G.W. Yang, Laser ablation in liquids: applications in the synthesis of nanospheres. Prog. Mater. Sci. 52, 648–698 (2007)

    Article  Google Scholar 

  20. H.B. Zeng, G.T. Duan, Y. Li, S.K. Yang, X.X. Xu, W.P. Cai, Blue luminescence of ZnO nanospheres based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20, 561–572 (2010)

    Article  Google Scholar 

  21. H.L. Wang, Q.M. Gao, L. Jiang, Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7, 2454–2459 (2011)

    Google Scholar 

  22. B.G. Choi, M.H. Yang, S.C. Jung, K.G. Lee, J.G. Kim, H.S. Park, T.J. Park, S.B. Lee, Y.K. Han, Y.S. Huh, Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids. ACS Nano 3, 2453–2460 (2013)

    Article  Google Scholar 

  23. V. Gupta, S. Gupta, N. Miura, Statically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. J. Power Sour. 175, 680–685 (2008)

    Article  ADS  Google Scholar 

  24. Z. Wu, Y. Zhu, X. Ji, NiCo2O4-based materials for electrochemical supercapacitors. J. Mater. Chem. A 2, 14759–14772 (2014)

    Article  Google Scholar 

  25. Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen, G. Shen, Morphology evolution of Urchin-like NiCo2O4 nanostructures and their applications as pseudocapacitors and photoelectrochemical cells. J. Mater. Chem. 22, 21647–21653 (2012)

    Article  Google Scholar 

  26. D. Guo, Y. Luo, X. Yu, Q. Li, T. Wang, High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014)

    Article  Google Scholar 

  27. D. Fattakhova-Rohlfing, M. Wark, T. Brezesinski, B.M. Smarsly, J. Rathouský, Highly organized mesoporous TiO2 films with controlled crystallinity: a Li-insertion study. Adv. Funct. Mater. 17, 123–132 (2007)

    Article  Google Scholar 

  28. Y.B. Zhang, Z.G. Guo, Honeycomb-like NiCo2O4 films assembled from interconnected porous nanoflakes for supercapacitor. Mater. Chem. Phys. 171, 208–215 (2015)

    Article  Google Scholar 

  29. S. Khalid, C.B. Cao, L. Wang, Y.Q. Zhu, Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 6, 22699 (2016)

    Article  ADS  Google Scholar 

  30. N. Padmanathan, S. Selladurai, Controlled growth of Spinel NiCo2O4 nanostructures on carbon cloth as a superior electrode for supercapacitors. RSC Adv. 4, 8341–8349 (2014)

    Article  Google Scholar 

  31. Y. Cong, L. He, Y.F. Wang, Z.H. Liu, G.B. Zhang, K.N. Zhao, C.J. Tang, M.Y. Yan, Y.L. Han, L.Q. Mai, Pyrolyzed carbon with embedded NiO/Ni nanospheres for applications in microelectrodes. RSC Adv. 6, 43436–43441 (2016)

    Article  Google Scholar 

  32. Q.F. Wang, X.F. Wang, J. Xu, X. Ouyanga, X.J. Hou, D. Chen, R.M. Wang, G.Z. Shen, Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy. 8, 44–51 (2014)

    Article  Google Scholar 

  33. P.C. Chen, G.Z. Shen, S. Sukcharoenchoke, C.W. Zhou, Flexible and transparent supercapacitor based on in2o3 nanowire/carbon nanotube heterogeneous films. Appl. Phys. Lett. 94(043113), 1–3 (2009)

    Google Scholar 

  34. T. Chen, H.S. Peng, M. Durstock, L.M. Dai, High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci. Rep. 4, 3612 (2014)

    Article  ADS  Google Scholar 

  35. K.Z. Gao, Z.Q. Shao, X. Wu, X. Wang, Y.H. Zhang, W.J. Wang, F.J. Wang, Paper-based transparent flexible thin film supercapacitors. Nanoscale 5, 5307–5311 (2013)

    Article  ADS  Google Scholar 

  36. I. Nam, S. Park, G.P. Kim, J. Park, J. Yi, Transparent and ultra-bendable all-solid-state supercapacitors without percolation problems. Chem. Sci. 4, 1663–1667 (2013)

    Article  Google Scholar 

  37. J. Xiao, P. Liu, Y. Liang, H.B. Li, G.W. Yang, Super-stable ultrafine beta-tungsten nanospheres with metastable phase and related magnetism. Nanoscale 5, 899–903 (2013)

    Article  ADS  Google Scholar 

  38. L.H. Li, J. Xiao, P. Liu, G.W. Yang, Super adsorption capability from amorphousization of metal oxide nanospheres for dye removal. Sci. Rep. 5, 9028 (2015)

    Article  ADS  Google Scholar 

  39. R.T. Wang, J.W. Lang, Y.H. Liu, Z.Y. Lin, X.B. Yan, Ultra-small, size-controlled Ni(OH)2 nanospheres: elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Mater. 7, e183–e189 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The National Basic Research Program of China (2014CB931700) and State Key Laboratory of Optoelectronic Materials and Technologies supported this work. The authors are grateful to Prof. Z.K. Tang of the State Key Laboratory of Optoelectronic Materials and Technologies of Sun Yat-sen University for Au film deposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, J. & Yang, G. Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres. Appl. Phys. A 123, 469 (2017). https://doi.org/10.1007/s00339-017-1085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1085-0

Navigation