Skip to main content

Enhancement of the physical properties of novel (1−x) NiFe2O4 + (x) Al2O3 nanocomposite

Abstract

NiFe2O4, Al2O3 and their nanocomposites; (1−x) NiFe2O4 + (x) Al2O3, 0.0 ≤ x ≤ 1; were synthesized using the citrate–nitrate technique. The crystal structure was examined by X-ray diffraction, the microstructure was observed by transmission electron microscopy. The Curie temperature T C grows until reaching more than 1100 K with increasing alumina content (x), while the saturation magnetization (M s) decreased. The large improvement of room temperature resistivity which achieved two orders of magnitude from x = 0 to x = 70% was interpreted from the fact that the NiFe2O4 grains become electrically isolated and the conduction path is broken by the insulating Al2O3 nanoparticulates in the composite. The electrical properties of the nanocomposite could thus be tuned easily by adjusting the Al2O3 ratio to realize the targeted value of losses and resistivity at any temperature and frequency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magnet. Magnet. Mater. 321, 2035–2047 (2009)

    Article  ADS  Google Scholar 

  2. H. Yin, H.P. Too, G.M. Chow, The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26, 5818–5826 (2005)

    Article  Google Scholar 

  3. Y. Wang, X. Teng, J.S. Wang, H. Yang, Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@ polystyrene core-shellnanoparticles. Nano Lett. 3, 789–793 (2003)

    Article  ADS  Google Scholar 

  4. G.R. Dube, V.S. Darshane, Decomposition of 1-octanol on the spinel system Ga1-x FexCuMnO4. J. Mol. Catal. 79, 285–296 (1993)

    Article  Google Scholar 

  5. C.V.G. Reddy, S.V. Manorama, V.J. Rao, Preparation and characterisation of ferrites as gas sensor materials. J. Mater. Sci. Lett. 19, 775–778 (2000)

    Article  Google Scholar 

  6. Z.L. Tian, Y.Q. Lai, J. Li, Y.X. Liu, Effect of Ni content on corrosion behaviour ofNi/(10NiO–90NiFe2O4) cermet inert anode. Trans. Nonfer. Met. Soc. China 18, 361–365 (2008)

    Article  Google Scholar 

  7. Y.Q. Lai, Z.L. Tian, J. Li, S.L. Ye, X.Z. Li, Y.X. Liu, Results from 100 h electrolysis testing of NiFe2O4 based cermet as inert anode in aluminium reduction. Trans. Nonfer. Met. Soc. China 16, 970–974 (2006)

    Article  Google Scholar 

  8. E. Olsen, J. Thonstad, Nickel ferrite as inert anodes in aluminum electrolysis: part I material fabrication and preliminary testing. J. Appl. Electrochem. 29, 293–299 (1999)

    Article  Google Scholar 

  9. S. Muralidharan, V. Saraswathy, L.J. Berchmans, K. Thangavel, K.Y. Ann, Nickel ferrite (NiFe2O4): a possible candidate material as reference electrode for corrosion monitoring of steel in concrete environments. Sens. Actuators B Chem. 145, 225–231 (2010)

    Article  Google Scholar 

  10. Z.H. Bi, J.H. Zhu, J.L. Batey, CoFe2O4 spinel protection coating thermally converted from the electroplated Co–Fe alloy for solid oxide fuel cell interconnect application. J. Power Sour. 195, 3605–3611 (2010)

    Article  ADS  Google Scholar 

  11. X. Montero, F. Tietz, D. Sebold, H.P. Buchkremer, A. Ringuede, M. Cassir, A. Laresgoiti, I. Villarreal, MnCo1·9Fe0.1O4 spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells. J. Power Sour. 184, 172–179 (2008)

    Article  ADS  Google Scholar 

  12. K.Y. Park, K.Y. Jung, Synthesis of nano-structured alumina powders thru the aerosol process. Ceramist 12(2), 27–37 (2009)

    MathSciNet  Google Scholar 

  13. F. Mirjalili, L.C. Abdullah, H. Mohamad, A. Fakhru’l-Razi, A. B. D. Radiah, R. Aghababazadeh, Process for producing nano-alpha-alumina powder, ISRN Nanotechnol., Article ID 692594, 1–5 (2011)

  14. H. Noda, K. Muramoto, H. Kim, Preparation of nano-structured ceramics using nanosized Al2O3 particles. J. Mater. Sci. 38, 2043–2047 (2003)

    Article  ADS  Google Scholar 

  15. P.A. Janeway, Nanotechnology—it’s more than size. Am. Ceram. Soc. Bull. 82(4), 31–38 (2003)

    Google Scholar 

  16. S. Kim, J.J. Gislason, R.W. Morton, X.Q. Pan, H.P. Sun, R.M. Laine, Liquid-feed flame spray pyrolysis of nanopowders in the alumina-titania system. Chem. Mater. 16(12), 2336–2343 (2004)

    Article  Google Scholar 

  17. M. Trueba, S.P. Trasatti, Eur. J. Inorg. Chem. 17, 3393–3403 (2005)

    Article  Google Scholar 

  18. R.S. Zhou, R.L. Snyder, Acta Crystallogr. B 47, 617–630 (1991)

    Article  Google Scholar 

  19. M.A. Ahmed, S.F. Mansour, S.I. El-Dek, Investigation of the physicochemical properties of nanometric NiLa ferrite/PST matrix. Solid State Ionics 181, 1149–1155 (2010)

    Article  Google Scholar 

  20. Z. Ghezelbash, D. Ashouri, S. Mousavlan, A.H. Ghandi, Y. Rahnama, Bull. Mater. Sci. 35(6), 925–931 (2012)

    Article  Google Scholar 

  21. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, J. Alloy. Compd. 563, 6–11 (2013)

    Article  Google Scholar 

  22. V. Jagadeesha Angadi, A.V. Anupama, R. Kumar, S. Matteppanavar, B. Rudraswamy, B. Sahoo, J Alloys Compd. 682, 263–274 (2016)

    Article  Google Scholar 

  23. S.L. Young, H.Z. Chen, C.C. Lin, J.B. Shi, L. Horng, Y.T. Shih, J. Magn. Magn. Mater. 303(2), 325 (2006)

    Article  ADS  Google Scholar 

  24. Z.L. Wang, Y. Liu, Z. Zhang, Handbook of nanophase and nanostructured materials. Materials systems and applications, vol. 3 (Kluwer Academic, Plenum Publishers, USA, 2003)

    Book  Google Scholar 

  25. E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. Lond. A 240, 599 (1948)

    Article  ADS  Google Scholar 

  26. J. Maxwell, Electricity and magnetics, section 328, vol. 1 (Oxford University Press, London, 1873)

    Google Scholar 

  27. K. Wagner, Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  28. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  29. F. Haberey, H.J.P. Wijn, Phys. Stat. Sol. (a) 26, 231 (1968)

    Article  ADS  Google Scholar 

  30. J. Smit, H.J.P. Wijn, Ferrites (Cleaver-Humepress, London, 1959), p. 239

    Google Scholar 

  31. J.B. Goodenough, A.L. Loeb, Phys. Rev. 98(2), 391 (1955)

    Article  ADS  Google Scholar 

  32. T. Xiao-Xia, A. Manthiram, J.B. Goodenough, J. Solid State Chem. 79, 250 (1989)

    Article  ADS  Google Scholar 

  33. M. Hamzah, E. Saion, A. Kassim, E. Mahmud, I. Shahrim, J. Adv. Sci. 1(1), 9–14 (2009)

    Google Scholar 

  34. E.J.W. Verwey, P.W. Haayman, C.W. Romeijn, J. Chem. Phys. 15, 181–187 (1947)

    Article  ADS  Google Scholar 

  35. M.A. Ahmed, N. Okasha, S.F. Mansour, S.I. El-dek, Bi-modal improvement of the physico-chemical characteristics of PEG and MFe2O4 sub nano ferrite. J. Alloys Compd. 496, 345–350 (2010)

    Article  Google Scholar 

  36. M.J. Iqbal, M.N. Ashiq, P.H. Gomez, J. Magn. Magn. Mater. 320, 881–886 (2008)

    Article  ADS  Google Scholar 

  37. M.J. Iqbal, Z. Ahmad, T. Meydan, I.C. Nlebedim, Mater. Res. Bull. 47, 344–351 (2012)

    Article  Google Scholar 

  38. N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys. Condens. Mater. 14, 3221–3237 (2002)

    Article  ADS  Google Scholar 

  39. M.P. Pandya, K.B. Modi, H.H. Joshi, J. Mater. Sci. 40, 5223 (2005)

    Article  ADS  Google Scholar 

  40. M.A. Ahmed, S.I. El-Dek, A. Abd Elazim, Superlattices Microstruct. 74, 34–51 (2014)

    Article  ADS  Google Scholar 

  41. S.R. Elliott, Adv. Phys. 36(2), 135 (1987)

    Article  ADS  Google Scholar 

  42. A.R. Long, Adv. Phys. 31(5), 553 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. El-Dek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mansour, S.F., Ahmed, M.A., El-Dek, S.I. et al. Enhancement of the physical properties of novel (1−x) NiFe2O4 + (x) Al2O3 nanocomposite. Appl. Phys. A 123, 480 (2017). https://doi.org/10.1007/s00339-017-1084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1084-1