Skip to main content
Log in

Electron dynamics and optical properties modulation of monolayer MoS2 by femtosecond laser pulse: a simulation using time-dependent density functional theory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we adopted time-dependent density functional theory to investigate the optical properties of monolayer MoS2 and the effect of intense few-cycle femtosecond laser pulses on these properties. The electron dynamics of monolayer MoS2 under few-cycle and multi-cycle laser irradiation were described. The polarization direction of the laser had a marked effect on the energy absorption and electronic excitation of monolayer MoS2 because of anisotropy. Change in the polarization direction of few-cycle pulse changed the absorbed energy by a factor over 4000. Few-cycle pulse showed a higher sensitivity to the electronic property of material than multi-cycle pulse. The modulation of the dielectric properties of the material was observed on the femtosecond time scale. The negative divergence appeared in the real part of the function at low frequencies and photoinduced blue shift occurred due to Burstein-Moss effect. The irradiation of femtosecond laser caused the dielectric response within the infrared region and introduced anisotropy to the in-plane optical properties. Laser-based engineering of optical properties through controlling transient electron dynamics expands the functionality of MoS2 and has potential applications in direction-dependent optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423, 705–714 (2003)

    Article  ADS  Google Scholar 

  2. C. Wang, L. Jiang, F. Wang, X. Li, Y. Yuan, H. Xiao, H.-L. Tsai, Y. Lu, Journal of Physics-Condensed Matter 24, 275801 (2012)

    Article  Google Scholar 

  3. C. Wang, Z. Luo, J.A. Duan, L. Jiang, X.Y. Sun, Y.W. Hu, J.Y. Zhou, Y.F. Lu, Laser Phys. Lett. 12, 056001 (2015)

    Article  ADS  Google Scholar 

  4. A.F. Pan, W.J. Wang, X.S. Mei, K.D. Wang, W.Q. Zhao, T.Q. Li, Appl. Surf. Sci. 375, 90–100 (2016)

    Article  ADS  Google Scholar 

  5. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545–591 (2000)

    Article  ADS  Google Scholar 

  6. P.B. Corkum, F. Krausz, Nat. Phys. 3, 381–387 (2007)

    Article  Google Scholar 

  7. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163–234 (2009)

    Article  ADS  Google Scholar 

  8. T. Cheiwchanchamnangij, W.R.L. Lambrecht, Phys. Rev. B 85, 205302 (2012)

    Article  ADS  Google Scholar 

  9. X. Chen, Z. Wu, S. Xu, L. Wang, R. Huang, Y. Han, W. Ye, W. Xiong, T. Han, G. Long, Y. Wang, Y. He, Y. Cai, P. Sheng, N. Wang, Nat. Commun. 6, 6088 (2015)

    Article  ADS  Google Scholar 

  10. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11, 5111–5116 (2011)

    Article  ADS  Google Scholar 

  11. Y.-D. Fu, X.-X. Feng, M.-F. Yan, K. Wang, S.-Y. Wang, Phys. B Condens. Matter 426, 103–107 (2013)

    Article  ADS  Google Scholar 

  12. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695–2700 (2010)

    Article  Google Scholar 

  13. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  14. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett. 85, 146–149 (2000)

    Article  ADS  Google Scholar 

  15. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271–1275 (2010)

    Article  ADS  Google Scholar 

  16. D.W. Li, W. Xiong, L.J. Jiang, Z.Y. Xiao, H.R. Golgir, M.M. Wang, X. Huang, Y.S. Zhou, Z. Lin, J.F. Song, S. Ducharme, L. Jiang, J.F. Silvain, Y.F. Lu, ACS Nano 10, 3766–3775 (2016)

    Article  Google Scholar 

  17. A. Kumar, P. Ahluwalia, Physica B 419, 66–75 (2013)

    Article  ADS  Google Scholar 

  18. T.-Y. Kim, K. Cho, W. Park, J. Park, Y. Song, S. Hong, W.-K. Hong, T. Lee, ACS Nano 8, 2774–2781 (2014)

    Article  Google Scholar 

  19. C. Lui, A. Frenzel, D. Pilon, Y.-H. Lee, X. Ling, G. Akselrod, J. Kong, N. Gedik, Phys. Rev. Lett. 113, 166801 (2014)

    Article  ADS  Google Scholar 

  20. A. Kumar, P.K. Ahluwalia, Phys. B Condens. Matter 407, 4627–4634 (2012)

    Article  ADS  Google Scholar 

  21. A. Kumar, P.K. Ahluwalia, Mater. Chem. Phys. 135, 755–761 (2012)

    Article  Google Scholar 

  22. W. Li, A.G. Birdwell, M. Amani, R.A. Burke, X. Ling, Y.-H. Lee, X. Liang, L. Peng, C.A. Richter, J. Kong, D.J. Gundlach, N.V. Nguyen, Phys. Rev. B 90, 195434 (2014)

    Article  ADS  Google Scholar 

  23. J.W. Park, H.S. So, S. Kim, S.-H. Choi, H. Lee, J. Lee, C. Lee, Y. Kim, J. Appl. Phys. 116, 183509 (2014)

    Article  Google Scholar 

  24. Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D.E. Aspnes, C.G. Van de Walle, N.V. Nguyen, Y.-W. Zhang, L. Cao, Sci. Rep. 5, 16996 (2015)

    Article  ADS  Google Scholar 

  25. A. Castro, M.A.L. Marques, A. Rubio, J. Chem. Phys. 121, 3425–3433 (2004)

    Article  ADS  Google Scholar 

  26. T. Otobe, M. Yamagiwa, J.I. Iwata, K. Yabana, T. Nakatsukasa, G.F. Bertsch, Phys. Rev. B 77, 165104 (2008)

    Article  ADS  Google Scholar 

  27. J.O. Joswig, L.O. Tunturivuori, R.M. Nieminen, J. Chem. Phys. 128, 014707 (2008)

    Article  ADS  Google Scholar 

  28. G.F. Bertsch, J.I. Iwata, A. Rubio, K. Yabana, Phys. Rev. B 62, 7998–8002 (2000)

    Article  ADS  Google Scholar 

  29. T. Otobe, K. Yabana, J.I. Iwata, J. Phys. Condens. Matter 21, 064224 (2009)

    Article  ADS  Google Scholar 

  30. S.A. Sato, K. Yabana, Y. Shinohara, T. Otobe, G.F. Bertsch, Phys. Rev. B 89, 064304 (2014)

    Article  ADS  Google Scholar 

  31. A. Dashora, U. Ahuja, K. Venugopalan, Comput. Mater. Sci. 69, 216–221 (2013)

    Article  Google Scholar 

  32. M. Durach, A. Rusina, M.F. Kling, M.I. Stockman, Phys. Rev. Lett. 107, 086602 (2011)

    Article  ADS  Google Scholar 

  33. H.Y. Shi, R.S. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H.G. Xing, L.B. Huang, ACS Nano 7, 1072–1080 (2013)

    Article  Google Scholar 

  34. D. Yu, L. Jiang, F. Wang, L.T. Qu, Y.F. Lu, Appl. Phys. A Mater. Sci. Process. 122, 494 (2016)

    Article  ADS  Google Scholar 

  35. B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, D.H.H. Hoffmann, Appl. Phys. A Mater. Sci. Process. 101, 19–25 (2010)

    Article  ADS  Google Scholar 

  36. F. Xia, H. Wang, Y. Jia, Nat. Commun. 5, 4458 (2014)

    ADS  Google Scholar 

  37. P.K. Sarswat, S. Sarkar, D. Bhattacharyya, J. Cho, M.L. Free, Ceram. Int. 42, 13113–13127 (2016)

    Article  Google Scholar 

  38. T. Moss, Phys. Status Solidi (b) 101, 555–561 (1980)

    Article  ADS  Google Scholar 

  39. V.U. Nazarov, G. Vignale, Phys. Rev. Lett. 107, 216402 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 91323301 and 51605029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Jiang, L., Wang, F. et al. Electron dynamics and optical properties modulation of monolayer MoS2 by femtosecond laser pulse: a simulation using time-dependent density functional theory. Appl. Phys. A 123, 476 (2017). https://doi.org/10.1007/s00339-017-1077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1077-0

Navigation