Skip to main content
Log in

Laser-induced periodic surface structures formation on mesoporous silicon from nanoparticles produced by picosecond and femtosecond laser shots

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper deals with the formation of laser-induced periodic surface structures (LIPSS) on mesoporous silicon thin films induced by two laser regimes in the UV range: picosecond and femtosecond. Different LIPSS formation mechanisms from nanoparticles, mainly coalescence and agglomeration, have been evidenced by scanning electron microscopy analysis. The apparition of a liquid phase during both laser interaction at low fluence (20 mJ/cm2) and after a large number of laser pulses (up to 12,000) has been also shown with 100 nm size through incubation effect. Transmission electron microscopy analyses have been conducted to investigate the molten phase structures below and inside LIPSS. Finally, it has shown that LIPSS are composed of amorphous silicon when mesoporous silicon is irradiated by laser beam in both regimes. Nevertheless, mesoporous silicon located between LIPSS stays crystallized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, Femtosecond laser-induced periodic surface structures. J. Laser Appl. 2012(24), 42006 (2012). doi:10.2351/1.4712658

    Article  Google Scholar 

  2. A.Y. Vorobyev, C. Guo, Femtosecond laser-induced periodic surface structure formation on tungsten. J. Appl. Phys. 104(6), 8–11 (2008). doi:10.1063/1.2981072

    Article  Google Scholar 

  3. S. Moradi, S. Kamal, P. Englezos, S.G. Hatzikiriakos, Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity. Nanotechnology 24(41), 415302 (2013). doi:10.1088/0957-4484/24/41/415302

    Article  Google Scholar 

  4. M. Gedvilas, J. Mikšys, G. Račiukaitis, Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation. RSC Adv. 5(92), 75075–75080 (2015). doi:10.1039/C5RA14210E

    Article  Google Scholar 

  5. O. Varlamova, C. Martens, M. Ratzke, J. Reif, Genesis of femtosecond-induced nanostructures on solid surfaces. Appl. Opt. 53(31), I10–I15 (2014). doi:10.1364/AO.53.000I10

    Article  Google Scholar 

  6. J.F. Young, J.S. Preston, Driel H.M. Van, J.E. Sipe, Laser induced periodic surface structure. II. Experiments on Ge, Si, Al and brass. Phys. Rev. B 27(2), 1155–1172 (1983). doi:10.1103/PhysRevB.27.1155

    Article  ADS  Google Scholar 

  7. T.T.D. Huynh, N. Semmar, Dependence of ablation threshold and LIPSS formation on copper thin films by accumulative UV picosecond laser shots. Appl. Phys. A Mater. Sci. Process. 116(3), 1429–1435 (2014). doi:10.1007/s00339-014-8255-0

    Article  ADS  Google Scholar 

  8. A. Melhem, D. De Meneses Sousa, C. Andreazza-Vignolle, T. Defforge, G. Gautier, N. Semmar, Structural, optical and thermal analysis of n-type mesoporous silicon prepared by electrochemical etching. J. Phys. Chem. C (2015). doi:10.1021/acs.jpcc.5b04984

    Google Scholar 

  9. D. Baillis, J. Randrianalisoa, Prediction of thermal conductivity of nanostructures: influence of phonon dispersion approximation. Int. J. Heat Mass Transf. 52(11–12), 2516–2527 (2009). doi:10.1016/j.ijheatmasstransfer.2009.01.017

    Article  MATH  Google Scholar 

  10. A. Talbi, A. Petit, A. Melhem et al., Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction. Appl. Surf. Sci. 374, 31–35 (2016). doi:10.1016/j.apsusc.2015.09.003

    Article  ADS  Google Scholar 

  11. T.E. Itina, On nanoparticle formation by laser ablation in liquids. J. Phys. Chem. C 115(12), 5044–5048 (2011). doi:10.1021/jp1090944

    Article  Google Scholar 

  12. O.I. Eroshova, P.A. Perminov, S.V. Zabotnov et al., Structural properties of silicon nanoparticles formed by pulsed laser ablation in liquid media. Crystallogr. Rep. 57(6), 831–835 (2012). doi:10.1134/S1063774512030066

    Article  ADS  Google Scholar 

  13. N.G. Semaltianos, S. Logothetidis, W. Perrie et al., Silicon nanoparticles generated by femtosecond laser ablation in a liquid environment. J. Nanoparticle Res. 12(2), 573–580 (2010). doi:10.1007/s11051-009-9625-y

    Article  ADS  Google Scholar 

  14. R. Intartaglia, K. Bagga, F. Brandi, Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield. Opt. Express 22(3), 3117–3127 (2014). doi:10.1364/OE.22.003117

    Article  ADS  Google Scholar 

  15. J. Bonse, A. Rosenfeld, J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 106(10), 104910 (2009). doi:10.1063/1.3261734

    Article  ADS  Google Scholar 

  16. M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, H. Soder, Single- and multi-pulse formation of surface structures under static femtosecond irradiation. Appl. Surf. Sci. 253(19), 8075–8079 (2007). doi:10.1016/j.apsusc.2007.02.093

    Article  ADS  Google Scholar 

  17. J. Bonse, J. Krüger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J. Appl. Phys. 108(3), 034903 (2010). doi:10.1063/1.3456501

    Article  ADS  Google Scholar 

  18. O. Varlamova, J. Reif, S. Varlamov, M. Bestehorn. Self-Organized Surface Patterns Originating From Laser-Induced Instability (2015). doi:10.1007/978-3-319-12217-5_1

  19. J. Reif, O. Varlamova, S. Uhlig, S. Varlamov, M. Bestehorn, On the physics of self-organized nanostructure formation upon femtosecond laser ablation. Appl. Phys. A 117(1), 179–184 (2014). doi:10.1007/s00339-014-8339-x

    Article  ADS  Google Scholar 

  20. M. Gedvilas, G. Raciukaitis, V. Kucikas, K. Regelskis, Driving forces for self-organization in thin metal films during their partial ablation with a cylindrically focused laser beam. AIP Conf. Proc. 2012(1464), 229–243 (2012). doi:10.1063/1.4739877

    Article  ADS  Google Scholar 

  21. A. Talbi, C.T. Tameko, A. Stolz, E. Millon, C. Boulmer-Leborgne, N. Semmar, Nanostructuring of titanium oxide thin film by UV femtosecond laser beam: from one spot to large surfaces. Appl. Surf. Sci. (2017). doi:10.1016/j.apsusc.2017.02.033

    Google Scholar 

  22. Z. Zhou, W. Ma, Investigation of thermomechanical responses in ultrafast laser heating of metal nanofilms. Thin Solid Films 519(22), 7940–7946 (2011). doi:10.1016/j.tsf.2011.05.062

    Article  ADS  Google Scholar 

  23. M. Shimizu, M. Hashida, Y. Miyasaka, S. Tokita, S. Sakabe, Unidirectionally oriented nanocracks on metal surfaces irradiated by low-fluence femtosecond laser pulses. Appl. Phys. Lett. 103(17), 174106 (2013). doi:10.1063/1.4827296

    Article  ADS  Google Scholar 

  24. S. Gräf, F.A. Müller, Polarisation-dependent generation of fs-laser induced periodic surface structures. Appl. Surf. Sci. 331, 150–155 (2015). doi:10.1016/j.apsusc.2015.01.056

    Article  ADS  Google Scholar 

  25. A. Rousse, C. Rischel, S. Fourmaux et al., Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410(6824), 65–68 (2001). doi:10.1038/35065045

    Article  ADS  Google Scholar 

  26. T.T.D. Huynh, M. Vayer, A. Sauldubois, A. Petit, N. Semmar, Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam. Appl. Phys. Lett. 107(19), 193105 (2015). doi:10.1063/1.4935413

    Article  ADS  Google Scholar 

  27. N.M. Bulgakova, Theoretical models and qualitative interpretations of fs laser material processing. J. Laser Micro/Nanoeng. 2(1), 76–86 (2007). doi:10.2961/jlmn.2007.01.0014

    Article  Google Scholar 

  28. E.L. Gurevich, S.V. Gurevich, Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl. Surf. Sci. 302, 118–123 (2014). doi:10.1016/j.apsusc.2013.10.141

    Article  ADS  Google Scholar 

  29. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Femtosecond laser ablation of silicon–modification thresholds and morphology. Appl. Phys. A 74(1), 19–25 (2002). doi:10.1007/s003390100893

    Article  ADS  Google Scholar 

  30. A.A. Ionin, E.V. Golosov, R.K. Yu et al., Formation of quasi-periodic nano- and microstructures on silicon surface under IR and UV femtosecond laser pulses. Quantum Electron. 41(9), 829 (2011). doi:10.1070/Qe2011v041n09abeh014530

    Article  ADS  Google Scholar 

  31. G. Raciukaitis, M. Brikas, P. Gecys, M. Gedvilas, Accumulation effects in laser ablation of metals with high-repetition-rate lasers. SPIE 7005, 70052L (2008). doi:10.1117/12.782937

    ADS  Google Scholar 

  32. J. Jia, M. Li, C.V. Thompson, Amorphization of silicon by femtosecond laser pulses. Appl. Phys. Lett. 84(16), 3205–3207 (2004). doi:10.1063/1.1719280

    Article  ADS  Google Scholar 

  33. M.S. Rogers, C.P. Grigoropoulos, A.M. Minor, S.S. Mao, Absence of amorphous phase in high power femtosecond laser-ablated silicon. Appl. Phys. Lett. 94(1), 2007–2010 (2009). doi:10.1063/1.3052693

    Article  Google Scholar 

  34. Y. Izawa, Y. Izawa, Y. Setsuhara et al., Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation. Appl. Phys. Lett. 90(4), 1–3 (2007). doi:10.1063/1.2431709

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadjib Semmar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talbi, A., Kaya-Boussougou, S., Sauldubois, A. et al. Laser-induced periodic surface structures formation on mesoporous silicon from nanoparticles produced by picosecond and femtosecond laser shots. Appl. Phys. A 123, 463 (2017). https://doi.org/10.1007/s00339-017-1075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1075-2

Navigation