Skip to main content

Advertisement

Log in

Effect of ordered B-site cations on the structure, elastic and thermodynamic properties of KTa0.5Nb0.5O3 crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

BO6 oxygen octahedral was considered as the key part in ABO3 perovskite structure, and the electro-optical, elastic and thermodynamic properties of potassium tantalate niobate (KTa0.5Nb0.5O3, abbreviated as KTN) were closely depended on the B-site Ta/Nb ratio and ordering. The effect of [100]NT, [110]NT, and [111]NT B-site cations ordering (N means a pure Nb layer parallel to (h, k, l), T means a pure Ta layer parallel to (h, k, l)) on structure, elastic properties and Debye temperatures properties of KTN were investigated based on density functional theory (DFT). KTN with [111]NT B-site ordering presents an cubic phase structure with excellent stability from the view of lattice properties. The elastic properties include elastic stiffness coefficients C ij , bulk modulus B, shear modulus G, Young’s modulus E and Poisson’ ratio ν were calculated. The elastic stiffness coefficients C 11 of KTN with B-site ordering have approached to maximum 485.506 GPa, indicating that KTN materials have better deformation ability along x axis compared with other perovskite materials. The calculated results of bulk modulus B and the shear modulus G show that KTN with [100]NT B-site ordering has stronger ability to resist fracture and plastic deformation. And the criteria B/G <1.75 suggests that KTN should be classified as a brittle material. The KTN with [100]NT B-site has excellent ductility properties compared with any other B-site arrangements. Debye temperatures of KTN with [100]NT, [110]NT, [111]NT are about 650 K, and KTN with [100]NT B-site has best thermodynamic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Z. Tylczynski, P. Busz, Mater. Chem. Phys. 183, 254 (2016)

    Article  Google Scholar 

  2. C.J. Wang, J.B. Gu, W.X. Zhang, B. Sun, D.D. Liu, G.Q. Liu, Comput. Mater. Sci. 124, 375 (2016)

    Article  Google Scholar 

  3. W.H. Chen, H.C. Cheng, C.F. Yu, J. Alloy. Compd. 689, 857 (2016)

    Article  Google Scholar 

  4. H. Tian, C.P. Hu, Q.Z. Chen, Z.X. Zhou, Mater. Lett. 68, 14 (2012)

    Article  Google Scholar 

  5. H. Tian, Z.X. Zhou, D.W. Gong, H.F. Wang, Y.Y. Jiang, C.F. Hou, Opt. Commum. 281, 1720 (2008)

    Article  ADS  Google Scholar 

  6. W.Q. Huang, H. Yang, G.W. Lu, Y.N. Gao, Phys. B 411, 56 (2013)

    Article  ADS  Google Scholar 

  7. J.J. Wang, F.Y. Meng, X.Q. Ma, M.X. Xu, L.Q. Chen, J. Appl. Phys. 108, 034107 (2010)

    Article  ADS  Google Scholar 

  8. A. Mahmoud, A. Erba, E. El-Kelany Kh, M. Rérat, R. Orlando, Phys. Rev. B 89, 045103 (2014)

    Article  ADS  Google Scholar 

  9. C.E. Ekuma, M. Jarrell, J. Moreno, D. Bagayoko, AIP Adv. 2, 012189 (2012)

    Article  ADS  Google Scholar 

  10. C.Y. Yang, R. Zhang, Chin. Phys. B 23, 026301 (2014)

    Article  ADS  Google Scholar 

  11. S. Riehemann, D. Sabbert, S. Loheide, F. Matthes, G. von Bally, E. Kratzig, Opt. Mater. 4, 437 (1995)

    Article  ADS  Google Scholar 

  12. H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, Y. Jiang, Appl. Phys. B 91, 75 (2008)

    Article  ADS  Google Scholar 

  13. H. Tian, B. Yao, P. Tan, Z.X. Zhou, G. Shi, D.W. Gong, R. Zhang, Appl. Phys. Lett. 106, 102903 (2015)

    Article  ADS  Google Scholar 

  14. M. Shinagawa, J. Kobayashi, S. Yagi, Y. Sakai, Sensor Actuators A Phys. 192, 42 (2013)

    Article  Google Scholar 

  15. X.J. Zheng, H.Y. Zhao, X.P. Wang, B. Liu, J.D. Yu, X.L. Zhao, Ceram. Int. 41, S197 (2015)

    Article  Google Scholar 

  16. K.Y. Zheng, D.M. Zhang, Z.C. Zhong, F.X. Yang, X.Y. Han, Appl. Surf. Sci. 256, 1317 (2009)

    Article  ADS  Google Scholar 

  17. Y.X. Wang, W.L. Zhong, C.L. Wang, P.L. Zhang, Opt. Commun. 201, 79 (2002)

    Article  ADS  Google Scholar 

  18. W.L. Yang, Z.X. Zhou, B. Yang, Y.Y. Jiang, H. Tian, D.W. Gong, H.G. Sun, W. Chen, Appl. Surf. Sci. 257, 7221 (2011)

    Article  ADS  Google Scholar 

  19. H.G. Wu, S.M. Wang, Z.X. Xu, J. Fu, Mater. Lett. 57, 2742 (2003)

    Article  Google Scholar 

  20. J. Xu, A.P. Wilkinson, S. Pattanaik, Chem. Mater. 13, 1185 (2001)

    Article  Google Scholar 

  21. Y.Q. Shen, Z.X. Zhou, Comput. Mater. Sci. 42, 434 (2008)

    Article  Google Scholar 

  22. Y.Q. Shen, Z.X. Zhou, Comput. Mater. Sci. 41, 542 (2008)

    Article  Google Scholar 

  23. D. Rytz, A. Châtelain, U.T. Höchli, Phys. Rev. B 27, 6830 (1983)

    Article  ADS  Google Scholar 

  24. Y. Wang, Y.Q. Shen, Z.X. Zhou, Phys. B 406, 850 (2011)

    Article  ADS  Google Scholar 

  25. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  26. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  27. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  28. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  29. X. Wang, J. Wang, Y. Yu, H. Zhang, R.I. Boughton, J. Cryst. Growth 293, 398 (2006)

    Article  ADS  Google Scholar 

  30. O.H. Nielsen, R.M. Martin, Phys. Rev. B 32, 3792 (1985)

    Article  ADS  Google Scholar 

  31. J.P. Long, Phys. B 407, 4831 (2012)

    Article  ADS  Google Scholar 

  32. S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel, Comput. Mater. Sci. 29, 165 (2004)

    Article  Google Scholar 

  33. J. Long, L. Yang, X. Wei, J. Alloy. Compd. 549, 336 (2013)

    Article  Google Scholar 

  34. W. Voigt, in Lehrbuch der Kristallphysik, (L. Berlin, B.G. Teubner, Germany, 1928), p. 960

    MATH  Google Scholar 

  35. A. Reuss, Z. Angew, Math. Mech. 9, 49 (1929)

    Google Scholar 

  36. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    Article  ADS  Google Scholar 

  37. E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurement (McGraw-Hill, New York, 1973)

  38. S.F. Pugh, Philos. Mag. 45, 823 (1954)

  39. S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

  40. D.H. Chung, W.R. Buessem, J. Appl. Phys. 38, 2010 (1967)

    Article  ADS  Google Scholar 

  41. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 11444004), and the Natural Science Foundation of Heilongjiang Province (No. QC2015062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenlong Yang or Linjun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Han, J., Wang, L. et al. Effect of ordered B-site cations on the structure, elastic and thermodynamic properties of KTa0.5Nb0.5O3 crystal. Appl. Phys. A 123, 461 (2017). https://doi.org/10.1007/s00339-017-1073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1073-4

Navigation