Skip to main content
Log in

A study on low sintering-temperature (1 − x)(0.98(Bi0.5(Na0.78K0.22)0.5TiO3) − 0.02CuO) − xCoFe2O4 particulate composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low sintering-temperature lead-free particulate composites of (1 − x)(0.98(Bi0.5(Na0.78 K0.22)0.5TiO3 − 0.02CuO) − (x)CoFe2O4(x = 0–0.15) were synthesized by a combination of sol–gel and solid-state sintering methods. Structural, morphological, ferroelectric, and ferromagnetic properties of the composites were systematically investigated using different techniques. XRD results and FE-SEM images indicated the formation of single phase for parent matrix and the development of two component phases in all composites without any impurities. With increasing CoFe2O4 (CFO) content, P–E loops displayed a gradual increase in the coercive field (E c). The ferroelectric properties of BNKTC were significantly reduced with increasing CFO content, evidenced by a slight decrease in saturated polarization (P s), and a sharp reduction in normalized strain (S max/E max) and piezoelectric constant (d 33). Conversely, M-H loops showed a remarkable improvement in ferromagnetism with increasing CFO content, which is a good sign for searching multiferroic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Srinivas, R.V. Krishnaiah, T. Karthik, P. Suresh, S. Asthana, S.V. Kamat, Appl. Phys. Lett. 101(8), 082902 (2012)

    Article  ADS  Google Scholar 

  2. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007)

    Article  ADS  Google Scholar 

  3. A. Baji, Y.-W. Mai, R. Yimnirun, S. Unruan, RSC Adv. 4(98), 55217–55223 (2014)

    Article  Google Scholar 

  4. L.T.M. Oanh, D.B. Do, N.V. Minh, Appl. Phys. A 122, 660 (2016). doi:10.1007/s00339-016-0207-4

    Article  ADS  Google Scholar 

  5. S. Thomas, N. Kalarikkal, A.M. Stephan, B. Raneesh, A.K. Haghi, Advanced nanomaterials: synthesis, properties, and applications (Apple Academic (CRC), Toronto, 2014), p. 402

    Book  Google Scholar 

  6. B.Y. Wang, H.T. Wang, S.B. Singh, Y.C. Shao, Y.F. Wang, C.H. Chuang, P.H. Yeh, J.W. Chiou, C.W. Pao, H.M. Tsai, H.J. Lin, J.F. Lee, C.Y. Tsai, W.F. Hsieh, M.H. Tsai, W.F. Pong, RSC Adv. 3(21), 7884 (2013)

    Article  Google Scholar 

  7. S.-T. Zhang, A.B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.J. Kleebe, J. Rödel, J. Appl. Phys. 103, 034107 (2008)

    Article  ADS  Google Scholar 

  8. C.W. Ahn, H.S. Kim, W.S. Woo, S.S. Won, H.J. Seog, S.A. Chae, B.C. Park, K.B. Jang, Y.P. Ok, H.H. Chong, I.W. Kim, J. Am. Ceram. Soc. 98(6), 1877–1883 (2015)

    Article  Google Scholar 

  9. F. Yang, F. Liu, C. Dong, F. Zhang, M. Tang, J. Sol-Gel. Sci. Technol. 73, 469–475 (2015)

    Article  Google Scholar 

  10. L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, J. Phys.: Condens. Matter 20(43), 434220 (2008)

    Google Scholar 

  11. Y. Chen, T. Fitchorov, A.L. Geiler, J. Gao, C. Vittoria, V.G. Harris, Appl. Phys. A 100, 1149–1155 (2010). doi:10.1007/s00339-010-5726-9

    Article  ADS  Google Scholar 

  12. J.F. Scott, Nat. Mater. 6, 256–257 (2007)

    Article  ADS  Google Scholar 

  13. U. Acevedo, R. Lopez-Noda, R. Breitwieser, F. Calderon, S. Ammar, R. Valenzuela, AIP Adv. 7(5), 055813 (2017)

    Article  ADS  Google Scholar 

  14. H.-S. Han, N.-B. Do, K.-N. Pham, H.-D. Jang, V.D.N. Tran, W.-P. Tai, J.-S. Lee, Ferroelectrics 421, 88–91 (2011)

    Article  Google Scholar 

  15. J.-Y. Lee, J.-W. Choi, M.-G. Kang, S.-J. Kim, T.-K. Ko, S.-J. Yoon, J. Electroceram. 23, 572–575 (2009)

    Article  Google Scholar 

  16. J. Wu, RSC Adv. 4, 53490 (2014)

    Article  Google Scholar 

  17. K.H.J. Buschow, F.R.D. Boer, Physics of magnetism and magnetic materials (Springer, Berlin, 2003)

    Book  Google Scholar 

  18. N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, RSC Adv. 5(70), 56560–56569 (2015)

    Article  Google Scholar 

  19. C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 122, 6263–6267 (2000)

    Article  Google Scholar 

  20. E.V. Ramana, F. Figueiras, M.P. Graca, M.A. Valente, Dalton Trans. 43(26), 9934–9943 (2014)

    Article  Google Scholar 

  21. M. Tyagi, M. Kumari, R. Chatterjee, P. Sharma, Appl. Phys. Lett. 106(20), 202904 (2015)

    Article  ADS  Google Scholar 

  22. N. Tiana, H. Huang, Y. He, Y. Guo, T. Zhang, Y. Zhang, Dalton Trans. 44, 4297–4307 (2015)

    Article  Google Scholar 

  23. H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, Actuators 5(1), 9 (2016)

    Article  Google Scholar 

  24. S. Ahda, S. Misfadhila, P. Parikin, T.Y.S.P. Putra, Mater. Sci. Eng. 176, 012048 (2016)

    Google Scholar 

  25. J. Scott, J. Phys. Condens. Matter 20, 021001 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Thi Mai Oanh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oanh, L.T.M., Van Minh, N., Ahn, C.W. et al. A study on low sintering-temperature (1 − x)(0.98(Bi0.5(Na0.78K0.22)0.5TiO3) − 0.02CuO) − xCoFe2O4 particulate composites. Appl. Phys. A 123, 465 (2017). https://doi.org/10.1007/s00339-017-1071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1071-6

Navigation