Skip to main content
Log in

Active carbon electrode fabricated via large-scale coating-transfer process for high-performance supercapacitor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrodes play important roles on the performance of supercapacitors, and low-cost, large-scale fabrication of high-performance electrodes is closely related to the actual application of supercapacitors. Herein, a low-cost, large-scale coating-transfer method was developed to fabricate high-performance carbon electrodes with excellent homogeneity, high conductivity, and large surface area. Symmetric button supercapacitors using active carbon as the electrode material fabricated via coating-transfer process exhibit good specific capacitance up to 211 F g−1 at 0.1 A g−1 in 1 M neutral aqueous electrolyte, which shows 40% improvement as compared with convention rolling process. Furthermore, these supercapacitors present high repeatability and excellent performance stability. The research demonstrates that the low-cost, large-scale coating-transfer process shows great potentials in practical application for fabricating high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and super capacitors begin. Science 343, 1210–1211 (2014)

    Article  ADS  Google Scholar 

  2. G.A. Ferrero, A.B. Fuertes, M. Sevilla, From soybean residue to advanced supercapacitors. Sci. Rep. 5, 16618 (2015)

    Article  ADS  Google Scholar 

  3. H.Y. Jung, M.B. Karimi, M.G. Hahm, P.M. Ajayan, Y.J. Jung, Transparent, flexible supercapacitors from nano-engineered carbon films. Sci. Rep. 2, 773 (2012)

    ADS  Google Scholar 

  4. Y. Li, H. Zhang, M. Crespo, H. Porwal, O. Picot, G. Santagiuliana, Z. Huang, E. Barbieri, N.M. Pugno, T. Peijs, E. Bilotti, In situ exfoliation of graphene in epoxy resins: a facile strategy to efficient and large scale graphene nanocomposites. ACS Appl. Mater. Interfaces 8, 24112–24122 (2016)

    Article  Google Scholar 

  5. C. Masarapu, L.P. Wang, X. Li, B. Wei, Tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure. Adv. Energy Mater. 2, 546–552 (2012)

    Article  Google Scholar 

  6. F. Miao, C. Shao, X. Li, K. Wang, N. Lu, Y. Liu, Electrospun carbon nanofibers/carbon nanotubes/polyaniline ternary composites with enhanced electrochemical performance for flexible solid-state supercapacitors. J. Power Sources 329, 516–524 (2016)

    Article  ADS  Google Scholar 

  7. X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen, G. Zhang, G. Liu, C. Wu, Y. Xie, A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat. Commun. 7, 11782 (2016)

    Article  ADS  Google Scholar 

  8. S. Tuukkanen, M. Valimaki, S. Lehtimaki, T. Vuorinen, D. Lupo, Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display. Sci. Rep. 6, 22967 (2016)

    Article  ADS  Google Scholar 

  9. F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014)

    Article  Google Scholar 

  10. J. Cai, H. Niu, Z. Li, Y. Du, P. Cizek, Z. Xie, H. Xiong, T. Lin, High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers. ACS Appl. Mater. Interfaces 7, 14946–14953 (2015)

    Article  Google Scholar 

  11. Y. Dai, H. Jiang, Y. Hu, Y. Fu, C. Li, Controlled synthesis of ultrathin hollow mesoporous carbon nanospheres for supercapacitor applications. Ind. Eng. Chem. Res. 53, 3125–3130 (2014)

    Article  Google Scholar 

  12. H. Fan, W. Shen, Gelatin-based microporous carbon nanosheets as high performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 4, 1328–1337 (2016)

    Article  Google Scholar 

  13. J.M. Griffin, A.C. Forse, W.Y. Tsai, P.L. Taberna, P. Simon, C.P. Grey, In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14, 812–819 (2015)

    Article  ADS  Google Scholar 

  14. M.G. Hahm, A. Leela Mohana Reddy, D.P. Cole, M. Rivera, J.A. Vento, J. Nam, H.Y. Jung, Y.L. Kim, N.T. Narayanan, D.P. Hashim, C. Galande, Y.J. Jung, M. Bundy, S. Karna, P.M. Ajayan, R. Vajtai, Carbon nanotube—nanocup hybrid structures for high power supercapacitor applications. Nano Lett. 12, 5616–5621 (2012)

    Article  ADS  Google Scholar 

  15. S. Hu, R. Rajamani, X. Yu, Flexible solid-state paper based carbon nanotube supercapacitor. Appl. Phys. Lett. 100, 104103 (2012)

    Article  ADS  Google Scholar 

  16. C. Huang, P.S. Grant, One-step spray processing of high power all-solid-state supercapacitors. Sci. Rep. 3, 2393 (2013)

    Article  ADS  Google Scholar 

  17. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010)

    Article  ADS  Google Scholar 

  18. C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paper like polymer supercapacitors. Nano Lett. 10, 4025–4031 (2010)

    Article  ADS  Google Scholar 

  19. X. Pan, G. Ren, M.N.F. Hoque, S. Bayne, K. Zhu, Z. Fan, Fast supercapacitors based on graphene-bridged V2O3/VOx Core–shell nanostructure electrodes with a power density of 1 MW kg−1. Adv. Mater. Interfaces 1, 1400398 (2014)

    Article  Google Scholar 

  20. M.J. Zhi, F. Yang, F.K. Meng, M.Q. Li, A. Manivannan, N.Q. Wu, Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires. ACS Sustain. Chem. Eng. 2, 1592–1598 (2014)

    Article  Google Scholar 

  21. R.B. Rakhi, W. Chen, M.N. Hedhili, D. Cha, H.N. Alshareef, Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl. Mater. Interfaces 6, 4196–4206 (2014)

    Article  Google Scholar 

  22. Y.P. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011)

    Article  Google Scholar 

  23. A. Varzi, C. Schütter, J. Krummacher, R. Raccichini, C. Wolff, G.T. Kim, S. Rösler, B. Blumenröder, T. Schubert, S. Passerini, A. Balducci, Carbons and electrolytes for advanced supercapacitors. J. Power Sources 326, 162–169 (2016)

    Article  ADS  Google Scholar 

  24. G.M. Wang, H.Y. Wang, X.H. Lu, Y.C. Ling, M.H. Yu, T. Zhai, Y.X. Tong, Y. Li, Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26, 2676–2682, 2615 (2014)

  25. C. Huang, J. Zhang, H.J. Snaith, P.S. Grant, Engineering the membrane/electrode interface to improve the performance of solid-state supercapacitors. ACS Appl. Mater. Interfaces 8, 20756–20765 (2016)

    Article  Google Scholar 

  26. X. Xu, S. Li, H. Zhang, Y. Shen, S.M. Zakeeruddin, M. Graetzel, Y.B. Cheng, M. Wang, A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 9, 1782–1787 (2015)

    Article  Google Scholar 

  27. P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, M. Respaud, A. Demortière, B. Daffos, P.L. Taberna, B. Chaudret, Y. Gogotsi, P. Simon, On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691–695 (2016)

    Article  ADS  Google Scholar 

  28. T.Q. Lin, I.W. Chen, F.X. Liu, C.Y. Yang, H. Bi, F.F. Xu, F.Q. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015)

    Article  ADS  Google Scholar 

  29. J.L. Yang, D. Vak, Y. Gogotsi, N. Clark, J. Subbiah, W.W.H. Wong, Organic photovoltaic modules fabricated by an industrial gravure printing proofer. Sol. Energy Mater. Sol. Cells 109, 47–55 (2013)

    Article  Google Scholar 

  30. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  ADS  Google Scholar 

  31. J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009)

    Article  ADS  Google Scholar 

  32. Q. Hu, H. Wu, J. Sun, J.L. Yang, Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale 8, 5350–5357 (2016)

    Article  ADS  Google Scholar 

  33. C.J. Zhang, Q. Luo, H. Wu, H.Y. Li, J.Q. Lai, G.Q. Ji, L.P. Yan, X.F. Wang, D. Zhang, J. Lin, L.W. Chen, J.L. Yang, C.Q. Ma, Roll-to-roll micro-gravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells. Org. Electron. 45, 190–197 (2017)

    Article  Google Scholar 

  34. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)

    Article  ADS  Google Scholar 

  35. A. Amiri, M. Shanbedi, G. Ahmadi, H. Eshghi, S.N. Kazi, B.T. Chew, M. Savari, M.N.M. Zubir, Mass production of highly-porous graphene for high-performance supercapacitors. Sci. Rep. 6, 32686 (2016)

    Article  ADS  Google Scholar 

  36. C. Zequine, C.K. Ranaweera, Z. Wang, S. Singh, P. Tripathi, O.N. Srivastava, B.K. Gupta, K. Ramasamy, P.K. Kahol, P.R. Dvornic, R.K. Gupta, High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications. Sci. Rep. 6, 37104 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (51673214), the Hunan Provincial Natural Science Foundation of China (2015JJ1015), and the Project of Innovation-driven Plan in Central South University (2015CXS036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junliang Yang or Xiaohua Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Liu, Z., Li, H. et al. Active carbon electrode fabricated via large-scale coating-transfer process for high-performance supercapacitor. Appl. Phys. A 123, 467 (2017). https://doi.org/10.1007/s00339-017-1069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1069-0

Navigation