Skip to main content

H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering


Catalyst-free (00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250–10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme’s kinetic parameter (Michaelis–Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    A.A. Ansari, P.R. Solanki, B.D. Malhotra, J. Biotech. 142, 179 (2009)

    Article  Google Scholar 

  2. 2.

    J. Xu, F. Shang, J.H.T. Luong, K.M. Razee, J.D. Glennon, Biosens. Bioelectron. 25, 1313 (2010)

    Article  Google Scholar 

  3. 3.

    A.M. Tahir, M.N. Siwy, Z. Neumann, R. Tremel, W. Ensinger, Anal. Chem. 83, 1673 (2011)

    Article  Google Scholar 

  4. 4.

    X. Liu, L. Luo, Y. Ding, Y. Xu, F. Li, J. Solid State Electrochem. 15, 447 (2011)

    Article  Google Scholar 

  5. 5.

    A.J.S. Ahammad, J. Biosens. Bioelectron. S. 9, 1 (2011)

    MathSciNet  Google Scholar 

  6. 6.

    M.M. Rahman, A.J.S. Ahammad, J-H. Jin, S.J. Ahn, J-J. Lee, Sensors 10, 4855 (2010)

    Article  Google Scholar 

  7. 7.

    Z. Li, R. Yang, M. Yu, F. Bai, C. Li, Z.L. Wang, J. Phys. Chem. C 112, 20114 (2008)

    Article  Google Scholar 

  8. 8.

    S. Farzana, V. Ganesh, S. Berchmans, J. Electrochem. Soc. 160, 9 (2013)

    Article  Google Scholar 

  9. 9.

    S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Anal. Chim. Acta 737, 1 (2012)

    Article  Google Scholar 

  10. 10.

    J. Zhou, N.S. Xu, Z.L. Wang, Adv. Mater. 18, 2432 (2006)

    Article  Google Scholar 

  11. 11.

    J. Zhao, F. Mu, L. Qin, X. Jia, C. Yang, Mat. Chem. Phys. 166, 176 (2015)

    Article  Google Scholar 

  12. 12.

    J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, Appl. Phys. Lett. 88, 233106 (2006)

    ADS  Article  Google Scholar 

  13. 13.

    T. Kavitha, A.I. Gopalan, K.P. Lee, S.Y. Park, Carbon 50, 2994 (2012)

    Article  Google Scholar 

  14. 14.

    M. Jafari, A.A. Khodadadi, Y. Mortazavi, H. Ghorchian, IMCS 2012—The 14th international meeting on chemical sensors, p. 687 (2012)

  15. 15.

    N. Batra, M. Tomar, V. Gupta, J. Appl. Phys. 112, 114701 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    J.Y. Kim, S.Y. Jo, G.J. Sun, A. Katoch, S.W. Choi, S.S. Kim, Sens. Actuators, B 192, 216 (2014)

    Article  Google Scholar 

  17. 17.

    Z. Zhiwei, L. Wei, Z. Xiaobing, W. Baoping, J. Helong, Sensors 10, 1216 (2010)

    Article  Google Scholar 

  18. 18.

    X. Cao, W. Ning, L.D. Li, L. Guo, Sens. Actuat. B 129, 268 (2008)

    Article  Google Scholar 

  19. 19.

    J. Wang, M. Xu, R. Zhao, G. Chen, Analyst 135, 1992 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    B.X. Gu, C.X. Xu, G.P. Zhu, S.Q. Liu, L.Y. Chen, M.L. Wang, J.J. Zhu, J. Phys. Chem. B 113, 6553 (2009)

    Article  Google Scholar 

  21. 21.

    W. Zhang, C. Guo, Y. Chang, F. Wu, S. Ding, Montash. Chem. 145, 107 (2014)

    Article  Google Scholar 

  22. 22.

    N.H. Al harden, M.A.A. Hamid, R. Shamsudin, N.K. Othman, L.K. Keng, Sensors 14, 1004 (2016)

    Article  Google Scholar 

  23. 23.

    V. Gupta, A. Mansingh, J. Appl. Phys. 80(2), 1063 (1996)

    ADS  Article  Google Scholar 

  24. 24.

    S. Bayan, D. Mohanta, J. Appl. Phys. 110, 054316 (2011)

    ADS  Article  Google Scholar 

  25. 25.

    W.I. Park, Y.H. Jun, S.W. Jung, G.C. Yi, Appl. Phys. Lett. 82, 964 (2003)

    ADS  Article  Google Scholar 

  26. 26.

    Y. Yang, B.K. Tay, X.W. Sun, Appl. Phys. Lett. 91, 071921 (2007)

    ADS  Article  Google Scholar 

  27. 27.

    E. Gür, S. Tüzemen, K. Meral, Y. Onganer, Appl. Phys. A 94, 549 (2009)

    ADS  Article  Google Scholar 

  28. 28.

    P.S. Venkatesh, V. Ramakrishna, K. Jeganathan, AIP Adv. 3, 082133 (2013)

    ADS  Article  Google Scholar 

  29. 29.

    N. Batra, M. Tomar, P. Jain, V. Gupta, J. Appl. Phys. 114, 124702 (2013)

    ADS  Article  Google Scholar 

  30. 30.

    S.K. Yadav, J. Singh, V.V. Agrawal, B.D. Malhotra, Appl. Phys. Lett. 101, 023703 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    N. Lavanya, S. Radhakrishnan, C. Sekar, Biosens. Bioelectron. 36, 41 (2012)

    Article  Google Scholar 

  32. 32.

    Y. Zhang, P. He, N. Hu, Electrochim. Acta 49, 1981 (2004)

    Article  Google Scholar 

  33. 33.

    Y. Xiao, H.X. Ju, H.Y. Chen, Anal. Chim. Acta 391(1), 73 (1999)

    Article  Google Scholar 

  34. 34.

    K. Arora, M. Tomar, V. Gupta, Biosens. Bioelectron. 30, 333 (2011)

    Google Scholar 

  35. 35.

    C. Xiang, Y. Zou, L.X. Sun, F. Xu, Sens. Actuatures B Chem. 136(1), 158 (2009)

    Article  Google Scholar 

  36. 36.

    J.P. Liu, C.X. Guo, C.M. Li, Y.Y. Li, Q.B. Chi, X.T. Huang, L. Liao, T. Yu, Electrochem. Commun. 11, 202 (2009)

    Article  Google Scholar 

  37. 37.

    Z. Yang, X.L. Zong, Z. Ye, B. Zhao, Q.L. Wang, P. Wang, Biomaterials 31, 7534 (2010)

    Article  Google Scholar 

  38. 38.

    S.P. Singh, S.K. Arya, P. Pandey, B.D. Malhotra, S. Saha, K. Sreenivas, V. Gupta, Appl. Phys. Lett. 91, 063901 (2007)

    ADS  Article  Google Scholar 

  39. 39.

    A. Wei, X.W. Sun, J.X. Wang, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, W. Huang, Appl. Phys. Lett. 89, 123902 (2006)

    ADS  Article  Google Scholar 

  40. 40.

    N.E. Hsu, W.K. Hung, Y.F. Chen, J. Appl. Phys. 96, 4671–4673 (2004)

    ADS  Article  Google Scholar 

  41. 41.

    I. Shalish, H. Temkin, V. Narayanamurti, Phys Rev B 69, 245401–245404 (2004)

    ADS  Article  Google Scholar 

  42. 42.

    B. Lin, Z. Fu, Y.G. Jia, Appl. Phys. Lett. 79, 943 (2001)

    ADS  Article  Google Scholar 

Download references


The authors would like to acknowledge TEQIP-II and center for interdisciplinary research lab (CIR) MNNIT, Allahabad, for providing financial assistance and facilities to carry out this research work. The authors also gratefully acknowledge IIT Kanpur for providing SEM facility.

Author information



Corresponding author

Correspondence to Naresh Kumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Kumar, N., Singh, P. et al. H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering. Appl. Phys. A 123, 453 (2017).

Download citation