Applied Physics A

, 123:453 | Cite as

H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering

  • Amit Srivastava
  • Naresh Kumar
  • Priti Singh
  • Sunil Kumar Singh
Article
  • 150 Downloads

Abstract

Catalyst-free (00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250–10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme’s kinetic parameter (Michaelis–Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.

Notes

Acknowledgements

The authors would like to acknowledge TEQIP-II and center for interdisciplinary research lab (CIR) MNNIT, Allahabad, for providing financial assistance and facilities to carry out this research work. The authors also gratefully acknowledge IIT Kanpur for providing SEM facility.

References

  1. 1.
    A.A. Ansari, P.R. Solanki, B.D. Malhotra, J. Biotech. 142, 179 (2009)CrossRefGoogle Scholar
  2. 2.
    J. Xu, F. Shang, J.H.T. Luong, K.M. Razee, J.D. Glennon, Biosens. Bioelectron. 25, 1313 (2010)CrossRefGoogle Scholar
  3. 3.
    A.M. Tahir, M.N. Siwy, Z. Neumann, R. Tremel, W. Ensinger, Anal. Chem. 83, 1673 (2011)CrossRefGoogle Scholar
  4. 4.
    X. Liu, L. Luo, Y. Ding, Y. Xu, F. Li, J. Solid State Electrochem. 15, 447 (2011)CrossRefGoogle Scholar
  5. 5.
    A.J.S. Ahammad, J. Biosens. Bioelectron. S. 9, 1 (2011)MathSciNetGoogle Scholar
  6. 6.
    M.M. Rahman, A.J.S. Ahammad, J-H. Jin, S.J. Ahn, J-J. Lee, Sensors 10, 4855 (2010)CrossRefGoogle Scholar
  7. 7.
    Z. Li, R. Yang, M. Yu, F. Bai, C. Li, Z.L. Wang, J. Phys. Chem. C 112, 20114 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Farzana, V. Ganesh, S. Berchmans, J. Electrochem. Soc. 160, 9 (2013)CrossRefGoogle Scholar
  9. 9.
    S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Anal. Chim. Acta 737, 1 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Zhou, N.S. Xu, Z.L. Wang, Adv. Mater. 18, 2432 (2006)CrossRefGoogle Scholar
  11. 11.
    J. Zhao, F. Mu, L. Qin, X. Jia, C. Yang, Mat. Chem. Phys. 166, 176 (2015)CrossRefGoogle Scholar
  12. 12.
    J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, Appl. Phys. Lett. 88, 233106 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    T. Kavitha, A.I. Gopalan, K.P. Lee, S.Y. Park, Carbon 50, 2994 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Jafari, A.A. Khodadadi, Y. Mortazavi, H. Ghorchian, IMCS 2012—The 14th international meeting on chemical sensors, p. 687 (2012)Google Scholar
  15. 15.
    N. Batra, M. Tomar, V. Gupta, J. Appl. Phys. 112, 114701 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J.Y. Kim, S.Y. Jo, G.J. Sun, A. Katoch, S.W. Choi, S.S. Kim, Sens. Actuators, B 192, 216 (2014)CrossRefGoogle Scholar
  17. 17.
    Z. Zhiwei, L. Wei, Z. Xiaobing, W. Baoping, J. Helong, Sensors 10, 1216 (2010)CrossRefGoogle Scholar
  18. 18.
    X. Cao, W. Ning, L.D. Li, L. Guo, Sens. Actuat. B 129, 268 (2008)CrossRefGoogle Scholar
  19. 19.
    J. Wang, M. Xu, R. Zhao, G. Chen, Analyst 135, 1992 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    B.X. Gu, C.X. Xu, G.P. Zhu, S.Q. Liu, L.Y. Chen, M.L. Wang, J.J. Zhu, J. Phys. Chem. B 113, 6553 (2009)CrossRefGoogle Scholar
  21. 21.
    W. Zhang, C. Guo, Y. Chang, F. Wu, S. Ding, Montash. Chem. 145, 107 (2014)CrossRefGoogle Scholar
  22. 22.
    N.H. Al harden, M.A.A. Hamid, R. Shamsudin, N.K. Othman, L.K. Keng, Sensors 14, 1004 (2016)CrossRefGoogle Scholar
  23. 23.
    V. Gupta, A. Mansingh, J. Appl. Phys. 80(2), 1063 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    S. Bayan, D. Mohanta, J. Appl. Phys. 110, 054316 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    W.I. Park, Y.H. Jun, S.W. Jung, G.C. Yi, Appl. Phys. Lett. 82, 964 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Yang, B.K. Tay, X.W. Sun, Appl. Phys. Lett. 91, 071921 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    E. Gür, S. Tüzemen, K. Meral, Y. Onganer, Appl. Phys. A 94, 549 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    P.S. Venkatesh, V. Ramakrishna, K. Jeganathan, AIP Adv. 3, 082133 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    N. Batra, M. Tomar, P. Jain, V. Gupta, J. Appl. Phys. 114, 124702 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    S.K. Yadav, J. Singh, V.V. Agrawal, B.D. Malhotra, Appl. Phys. Lett. 101, 023703 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    N. Lavanya, S. Radhakrishnan, C. Sekar, Biosens. Bioelectron. 36, 41 (2012)CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, P. He, N. Hu, Electrochim. Acta 49, 1981 (2004)CrossRefGoogle Scholar
  33. 33.
    Y. Xiao, H.X. Ju, H.Y. Chen, Anal. Chim. Acta 391(1), 73 (1999)CrossRefGoogle Scholar
  34. 34.
    K. Arora, M. Tomar, V. Gupta, Biosens. Bioelectron. 30, 333 (2011)Google Scholar
  35. 35.
    C. Xiang, Y. Zou, L.X. Sun, F. Xu, Sens. Actuatures B Chem. 136(1), 158 (2009)CrossRefGoogle Scholar
  36. 36.
    J.P. Liu, C.X. Guo, C.M. Li, Y.Y. Li, Q.B. Chi, X.T. Huang, L. Liao, T. Yu, Electrochem. Commun. 11, 202 (2009)CrossRefGoogle Scholar
  37. 37.
    Z. Yang, X.L. Zong, Z. Ye, B. Zhao, Q.L. Wang, P. Wang, Biomaterials 31, 7534 (2010)CrossRefGoogle Scholar
  38. 38.
    S.P. Singh, S.K. Arya, P. Pandey, B.D. Malhotra, S. Saha, K. Sreenivas, V. Gupta, Appl. Phys. Lett. 91, 063901 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    A. Wei, X.W. Sun, J.X. Wang, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, W. Huang, Appl. Phys. Lett. 89, 123902 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    N.E. Hsu, W.K. Hung, Y.F. Chen, J. Appl. Phys. 96, 4671–4673 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    I. Shalish, H. Temkin, V. Narayanamurti, Phys Rev B 69, 245401–245404 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    B. Lin, Z. Fu, Y.G. Jia, Appl. Phys. Lett. 79, 943 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsMotilal Nehru National Institute of TechnologyAllahabadIndia
  2. 2.Department of BiotechnologyMotilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations