Skip to main content
Log in

Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of MoO3 addition on the crystallization characteristics of 2Al2O3–23Li2O–(75 − x) B2O3 glass (where x MoO3 = 0, 10, 20, and 40 mol %) has been investigated. The compositional dependence of the glass transition (T g), and crystallization (T c) temperatures was determined by the differential thermal analysis (DTA). It was found that both the T g and T c decrease with increasing MoO3 content. The amorphous nature of the as-quenched glass and crystallinity of the produced glass–ceramics were confirmed by X-ray powder diffraction (XRD) analysis. Glass–ceramics embedded with diomignite (lithium diborate, Li2B4O7) were produced from all investigated glasses by heat-treating the as-quenched glasses at the appropriate temperatures obtained from the DTA traces. Addition of MoO3 to the glass composition at 10% MoO3, causes the formation of lithium molybdenum oxide (Li4MoO5) crystalline phase in addition to the diomignite phase. Increasing MoO3 content to 20% causes a phase transformation of lithium molybdenum oxide from the (Li4MoO5) to the (Li2MoO4) phase and the formation of another lithium borate (Li4B2O5) phase in addition to the diomignite. Further increase of MoO3 content to 40% results in another phase transformation to the lithium aluminum molybdenum oxide [LiAl(MoO4)2], and, in this case, the molybdenum content was excess enough to crystallize the molybdate (MoO3) itself. Scanning electron microscopy (SEM) was used to characterize the morphology and microstructure of the formed solid solution phases. The values of the T g decrease with increasing the MoO3 content. The ultrasonic wave velocities and elastic moduli were determined using the pulse-echo method. Both velocities (v L and v T) were increased as the MoO3 content, this increase can be attributed to the higher bond strength of Mo–O (607 kJ mol−1) than that of B–O (392 kJ mol−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.S. Reddy, G.N. Raju, G. Nagarjuna, N. Veeraiah, J. Alloys Comp. 438, 41–51 (2007)

    Article  Google Scholar 

  2. Y.M. Moustafa, A.K. Hassan, G. El-Damrawi, N.G. Yevtushenko, J. Non Cryst. Solids 194, 34 (1996)

    Article  ADS  Google Scholar 

  3. M.K. Halimah, W.H. Chiew, H.A.A. Sidek, W.M. Daud, Z.A. Wahab, A.M. Khamirul, S.M. Iskandar, Sains Malays. 43(6), 899 (2014)

    Google Scholar 

  4. M. Pal, B. Roy, M. Pal, J. Modern Phys. 2, 1062 (2011)

    Article  ADS  Google Scholar 

  5. L.S. Rao, J. Solid State Sci. 11, 578 (2009)

    Article  ADS  Google Scholar 

  6. I. Kashif, S.A. Rahman, A.G. Mostfa, E.M. Ibrahim, A.M. Sand, J. Alloys Compd. 352, 450 (2008)

    Google Scholar 

  7. H. Doweidar, G. El-Damrawi, M. Al Zaibani, J. Vi. Spec. 68, 91 (2013)

    Google Scholar 

  8. L. Hwa, S. Hwang, L. Liu, J. Non-Cryst. Solids 238, 193 (1998)

    Article  ADS  Google Scholar 

  9. S. Rada, A. Pascta, M. Culea, V. Maties, M. Rada, M. Barlea, E. Culea, J. Mol. Str. 89, 924 (2009)

    Google Scholar 

  10. Y. Saddeek, A. Abousehly, S. Hussien, J. Phys. D Appl. Phys. 40, 4674 (2007)

    Article  ADS  Google Scholar 

  11. V. Gowda, C. Reddy, K. Radha, R. Anavekar, J. Etourneau, K. Rao, J. Non-Cryst. Solids 353, 1150 (2007)

    Article  ADS  Google Scholar 

  12. S. Baccaro, Monika, G. Sharma, K.S. Thind, D. Singh, A. Cecillia, J. Nuc Ins. Meth. B 260, 613 (2007)

    Article  ADS  Google Scholar 

  13. E.I. Kamitsos, A.P. Ptsis, M.A. Karakassides, G.D. Chryssikos, J. Non-Cryst. Solids 126, 52 (1990)

    Article  ADS  Google Scholar 

  14. E. Kamitsos, M. Karakassides, G. Chryssikos, J. Phys. 91, 1073 (1987)

    Google Scholar 

  15. H. Doweidar, J. Mater. Sci. 25, 253 (1990)

    Article  ADS  Google Scholar 

  16. T.L. Cottrell, No 31, Washington, 1970; S.W. Benson, J. Chem. Educ. 42: 502 (1965); J.A. Kerr, Chem. Rev. 66: 465, (1966)

  17. Y.B. Saddeek, K.A. Aly, S.A. Bashier, Phys. B Cond. Matt. 405, 2407 (2010)

    Article  ADS  Google Scholar 

  18. M. Saad, M. Poulain, J. Mater. Sci. Forum. 19, 8 (1987)

    Google Scholar 

  19. J.S. Wang, E.M. Vogel, E. Snitzer, J. Opt. Mater. 3, 187 (1994)

    Article  Google Scholar 

  20. Y. Saddeek, K.A. Aly, A. Dahshan, I.M. El Kashif, J. Alloys Comp. 494, 210 (2010)

    Article  Google Scholar 

  21. M. Kodama, J. Mat. Sci. 26, 4048 (1991)

    Article  ADS  Google Scholar 

  22. R. Iordanova, V. Dimitrov, Y. Dimitriev, D. Klissurski, J. Non-Cryst. Solids 180, 58 (1994)

    Article  ADS  Google Scholar 

  23. G. Wen, X. Zheng, L. Song, Acta Mater. 55, 3583 (2007)

    Article  Google Scholar 

  24. M.S. Gaafar, H.A. Afifi, M.M. Mekawy, Phys. B 404, 1668 (2009)

    Article  ADS  Google Scholar 

  25. C. Lara, M.J. Pascual, A. Duran, J. Non-Cryst. Solids 348, 149 (2004)

    Article  ADS  Google Scholar 

  26. R.W. Whatmore, N.M. Shorrocks, C.O. Hara, F.W. Ainger, I.W. Young, Electron. Lett. 17, 11 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KH. S. Shaaban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K.S., Abo-naf, S.M., Abd Elnaeim, A.M. et al. Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses. Appl. Phys. A 123, 457 (2017). https://doi.org/10.1007/s00339-017-1052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1052-9

Navigation