Applied Physics A

, 123:418 | Cite as

The nano-fractal structured tungsten oxides films with high thermal stability prepared by the deposition of size-selected W clusters



Size-selected W n clusters (n = 1650) were deposited on the highly ordered pyrolytic graphite surface at room temperature under high vacuum conditions by utilizing a magnetron sputtering source and a magnet sector field. Moreover, geometrical structure and surface chemical states of deposited clusters were analyzed by in situ scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy, respectively. The formation of 2-D islands (lateral size ~150 nm) with multiple dendritic arms was observed by STM, and the structure of the individual W1650 clusters survived within the dendritic arms. To study the thermal stability of the nano-fractal structure under the atmospheric conditions, the sample was brought to the ambient air conditions and sequentially post-annealed at 200, 300, and 500 °C in the air. The nano-fractal structure was maintained after the 1st post-annealing process at 200 °C for 1 h in the air, and the subsequent 2nd post-annealing at 300 °C (for 1 h, in the air) also did not induce any noticeable change in the topological structure of the sample. The topological changes were observed only after the further post-annealing at a higher temperature (at 500 °C, 1 h) in the air. We show high potential use of these nano-structured films of tungsten oxides in ambient conditions.


Atomic Force Microscopy Image Scanning Tunneling Microscopy Fractal Structure Tungsten Oxide Scanning Tunneling Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Research Council of Science and Technology (NST) through Degree and Research Center (DRC) Program (2014) (No. DRC-14-03-KRICT).


  1. 1.
    E. Avendaño, L. Berggren, G.A. Niklasson, C.G. Granqvist, A. Azens, Thin Solid Films 496, 33 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    C.G. Granqvist, Sol. Energ. Mat. Sol. C. 60, 201 (2000)CrossRefGoogle Scholar
  3. 3.
    C.G. Granqvist, Electrochim. Acta 44, 3005 (1999)CrossRefGoogle Scholar
  4. 4.
    H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Funct. Mater. 21, 2175 (2011)CrossRefGoogle Scholar
  5. 5.
    A.Z. Sadek, H. Zheng, M. Breedon, V. Bansal, S.K. Bhargava, K. Latham, J. Zhu, L. Yu, Z. Hu, P.G. Spizzirri, W. Wlodarski, K. Kalantar-zadeh, Langmuir 25, 9545 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Zheng, Y. Tachibana, K. Kalantar-zadeh, Langmuir 26, 19148 (2010)CrossRefGoogle Scholar
  7. 7.
    K. Villa, S. Murcia-López, J.R. Morante, T. Andreu, Appl. Catal. B-Environ. 187, 30 (2016)CrossRefGoogle Scholar
  8. 8.
    Q. Chen, J. Li, X. Li, K. Huang, B. Zhou, W. Cai, W. Shangguan, Environ. Sci. Technol. 46, 11451 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye, L. Zhu, Appl. Catal. B-Environ. 166–167, 112 (2015)CrossRefGoogle Scholar
  10. 10.
    S.K. Deb, Sol. Energ. Mater. Sol. C. 92, 245 (2008)CrossRefGoogle Scholar
  11. 11.
    A. Georg, A. Georg, W. Graf, V. Wittwer, Vacuum 82, 730 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J. Zhang, Z. Liu, Z. Liu, A.C.S. Appl, Mater. Inter. 8, 9684 (2016)CrossRefGoogle Scholar
  13. 13.
    V. Cristino, S. Caramori, R. Argazzi, L. Meda, G.L. Marra, C.A. Bignozzi, Langmuir 27, 7276 (2011)CrossRefGoogle Scholar
  14. 14.
    L. Han, C. Chen, Y. Wei, B. Shao, X. Mu, Q. Liu, P. Zhu, J. Alloy. Compd. 656, 326 (2016)CrossRefGoogle Scholar
  15. 15.
    H.G. Moon, S.D. Han, M.-G. Kang, W.-S. Jung, B. Kwon, C. Kim, T. Lee, S. Lee, S.-H. Baek, J.-S. Kim, H.-H. Park, C.-Y. Kang, Sens. Actuators B-Chem. 229, 92 (2016)CrossRefGoogle Scholar
  16. 16.
    N.M.A. Hdia, M.S. Alqahtani, S.H. Mohamed, Appl. Phys. A 119, 1261 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Wang, M. Hu, Y. Wei, J. Liu, Y. Qin, Appl. Surf. Sci. 362, 525 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    C. Wang, X. Li, C. Feng, Y. Sun, G. Lu, Sens. Actuators. B-Chem. 210, 75 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, J. Tu, X. Xia, X. Wang, C. Gu, J. Mater. Chem. 21, 5492 (2011)CrossRefGoogle Scholar
  20. 20.
    G. Xi, Y. Yan, Q. Ma, J. Li, H. Yang, X. Lu, C. Wang, Chem. Eur. J. 18, 13949 (2012)CrossRefGoogle Scholar
  21. 21.
    R.M. Fernández-Domene, R. Sánchez-Tovar, E. Segura-Sanchís, J. García-Antón, Chem. Eng. J. 286, 59 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Tchaplyguine, G. Öhrwall, T. Andersson, S. Svensson, O. Björneholm, M. Huttula, M. Mikkelä, S. Urpelainen, S. Osmekhin, A. Caló, S. Aksela, H. Aksela, J. Electron. Spectrosc. 195, 55 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Heinzelmann, P. Kruppa, S. Proch, Y.D. Kim, G. Ganteför, Chem. Phys. Lett. 603, 1 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M. Farrag, J. Photoch. Photobiol. A 318, 42 (2016)CrossRefGoogle Scholar
  25. 25.
    C. Liu, B. Yang, E. Tyo, S. Seifert, J. Debartolo, B. Issendorff, P. Zapol, S. Vajda, L.A. Curtiss, J. Am. Chem. Soc. 137, 8676 (2015)CrossRefGoogle Scholar
  26. 26.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573 (1993)CrossRefGoogle Scholar
  28. 28.
    T.A. Witten, L.M. Sander, Phys. Rev. B 27, 5686 (1983)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R.Q. Hwang, J. Schröder, C. Günther, R.J. Behm, Phys. Rev. Lett. 67, 3279 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    G.H. Wang, H.Q. Zhang, M. Han, J.X. Ma, Q. Wang, Phys. Lett. A 189, 218 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    A. Dollinger, E.J. Park, C.H. Strobel, H. Bleuel, A. Marsteller, H.O. Seo, Y.D. Kim, G. Ganteför, Phys. Chem. Chem. Phys. 17, 20873 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Dollinger, C.H. Strobel, H. Bleuel, H.O. Seo, E.J. Park, Y.D. Kim, G. Ganteför, Curr. Appl. Phys. 15, 1095 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    J.F. Moulder, J. Chastain, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data (Physical Electronics, Chanhassen, 1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of ChemistrySungkyunkwan UniversitySuwonSouth Korea
  2. 2.Department of PhysicsKonstanz UniversityConstanceGermany
  3. 3.Department of Chemistry and Energy EngineeringSangmyung UniversitySeoulSouth Korea

Personalised recommendations