Skip to main content
Log in

The nano-fractal structured tungsten oxides films with high thermal stability prepared by the deposition of size-selected W clusters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Size-selected W n clusters (n = 1650) were deposited on the highly ordered pyrolytic graphite surface at room temperature under high vacuum conditions by utilizing a magnetron sputtering source and a magnet sector field. Moreover, geometrical structure and surface chemical states of deposited clusters were analyzed by in situ scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy, respectively. The formation of 2-D islands (lateral size ~150 nm) with multiple dendritic arms was observed by STM, and the structure of the individual W1650 clusters survived within the dendritic arms. To study the thermal stability of the nano-fractal structure under the atmospheric conditions, the sample was brought to the ambient air conditions and sequentially post-annealed at 200, 300, and 500 °C in the air. The nano-fractal structure was maintained after the 1st post-annealing process at 200 °C for 1 h in the air, and the subsequent 2nd post-annealing at 300 °C (for 1 h, in the air) also did not induce any noticeable change in the topological structure of the sample. The topological changes were observed only after the further post-annealing at a higher temperature (at 500 °C, 1 h) in the air. We show high potential use of these nano-structured films of tungsten oxides in ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Avendaño, L. Berggren, G.A. Niklasson, C.G. Granqvist, A. Azens, Thin Solid Films 496, 33 (2006)

    Article  ADS  Google Scholar 

  2. C.G. Granqvist, Sol. Energ. Mat. Sol. C. 60, 201 (2000)

    Article  Google Scholar 

  3. C.G. Granqvist, Electrochim. Acta 44, 3005 (1999)

    Article  Google Scholar 

  4. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Funct. Mater. 21, 2175 (2011)

    Article  Google Scholar 

  5. A.Z. Sadek, H. Zheng, M. Breedon, V. Bansal, S.K. Bhargava, K. Latham, J. Zhu, L. Yu, Z. Hu, P.G. Spizzirri, W. Wlodarski, K. Kalantar-zadeh, Langmuir 25, 9545 (2009)

    Article  Google Scholar 

  6. H. Zheng, Y. Tachibana, K. Kalantar-zadeh, Langmuir 26, 19148 (2010)

    Article  Google Scholar 

  7. K. Villa, S. Murcia-López, J.R. Morante, T. Andreu, Appl. Catal. B-Environ. 187, 30 (2016)

    Article  Google Scholar 

  8. Q. Chen, J. Li, X. Li, K. Huang, B. Zhou, W. Cai, W. Shangguan, Environ. Sci. Technol. 46, 11451 (2012)

    Article  ADS  Google Scholar 

  9. H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye, L. Zhu, Appl. Catal. B-Environ. 166–167, 112 (2015)

    Article  Google Scholar 

  10. S.K. Deb, Sol. Energ. Mater. Sol. C. 92, 245 (2008)

    Article  Google Scholar 

  11. A. Georg, A. Georg, W. Graf, V. Wittwer, Vacuum 82, 730 (2008)

    Article  ADS  Google Scholar 

  12. J. Zhang, Z. Liu, Z. Liu, A.C.S. Appl, Mater. Inter. 8, 9684 (2016)

    Article  Google Scholar 

  13. V. Cristino, S. Caramori, R. Argazzi, L. Meda, G.L. Marra, C.A. Bignozzi, Langmuir 27, 7276 (2011)

    Article  Google Scholar 

  14. L. Han, C. Chen, Y. Wei, B. Shao, X. Mu, Q. Liu, P. Zhu, J. Alloy. Compd. 656, 326 (2016)

    Article  Google Scholar 

  15. H.G. Moon, S.D. Han, M.-G. Kang, W.-S. Jung, B. Kwon, C. Kim, T. Lee, S. Lee, S.-H. Baek, J.-S. Kim, H.-H. Park, C.-Y. Kang, Sens. Actuators B-Chem. 229, 92 (2016)

    Article  Google Scholar 

  16. N.M.A. Hdia, M.S. Alqahtani, S.H. Mohamed, Appl. Phys. A 119, 1261 (2015)

    Article  ADS  Google Scholar 

  17. Z. Wang, M. Hu, Y. Wei, J. Liu, Y. Qin, Appl. Surf. Sci. 362, 525 (2016)

    Article  ADS  Google Scholar 

  18. C. Wang, X. Li, C. Feng, Y. Sun, G. Lu, Sens. Actuators. B-Chem. 210, 75 (2015)

    Article  Google Scholar 

  19. J. Zhang, J. Tu, X. Xia, X. Wang, C. Gu, J. Mater. Chem. 21, 5492 (2011)

    Article  Google Scholar 

  20. G. Xi, Y. Yan, Q. Ma, J. Li, H. Yang, X. Lu, C. Wang, Chem. Eur. J. 18, 13949 (2012)

    Article  Google Scholar 

  21. R.M. Fernández-Domene, R. Sánchez-Tovar, E. Segura-Sanchís, J. García-Antón, Chem. Eng. J. 286, 59 (2016)

    Article  Google Scholar 

  22. M. Tchaplyguine, G. Öhrwall, T. Andersson, S. Svensson, O. Björneholm, M. Huttula, M. Mikkelä, S. Urpelainen, S. Osmekhin, A. Caló, S. Aksela, H. Aksela, J. Electron. Spectrosc. 195, 55 (2014)

    Article  Google Scholar 

  23. J. Heinzelmann, P. Kruppa, S. Proch, Y.D. Kim, G. Ganteför, Chem. Phys. Lett. 603, 1 (2014)

    Article  ADS  Google Scholar 

  24. M. Farrag, J. Photoch. Photobiol. A 318, 42 (2016)

    Article  Google Scholar 

  25. C. Liu, B. Yang, E. Tyo, S. Seifert, J. Debartolo, B. Issendorff, P. Zapol, S. Vajda, L.A. Curtiss, J. Am. Chem. Soc. 137, 8676 (2015)

    Article  Google Scholar 

  26. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  27. A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573 (1993)

    Article  Google Scholar 

  28. T.A. Witten, L.M. Sander, Phys. Rev. B 27, 5686 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  29. R.Q. Hwang, J. Schröder, C. Günther, R.J. Behm, Phys. Rev. Lett. 67, 3279 (1991)

    Article  ADS  Google Scholar 

  30. G.H. Wang, H.Q. Zhang, M. Han, J.X. Ma, Q. Wang, Phys. Lett. A 189, 218 (1994)

    Article  ADS  Google Scholar 

  31. A. Dollinger, E.J. Park, C.H. Strobel, H. Bleuel, A. Marsteller, H.O. Seo, Y.D. Kim, G. Ganteför, Phys. Chem. Chem. Phys. 17, 20873 (2015)

    Article  Google Scholar 

  32. A. Dollinger, C.H. Strobel, H. Bleuel, H.O. Seo, E.J. Park, Y.D. Kim, G. Ganteför, Curr. Appl. Phys. 15, 1095 (2015)

    Article  ADS  Google Scholar 

  33. J.F. Moulder, J. Chastain, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data (Physical Electronics, Chanhassen, 1995)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Council of Science and Technology (NST) through Degree and Research Center (DRC) Program (2014) (No. DRC-14-03-KRICT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Ook Seo, Young Dok Kim or Gerd Gantefoer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, E.J., Dollinger, A., Huether, L. et al. The nano-fractal structured tungsten oxides films with high thermal stability prepared by the deposition of size-selected W clusters. Appl. Phys. A 123, 418 (2017). https://doi.org/10.1007/s00339-017-1037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1037-8

Keywords

Navigation