Skip to main content
Log in

Effect of the annealing and the spraying time on the properties of CZTS thin films prepared by the “Spray sandwich” technique

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have investigated synthesis conditions and some properties of sprayed Cu2ZnSnS4 (CZTS) thin films to determine the best preparation conditions for the realization of CZTS-based photovoltaic solar cells. The thin films are made by means of spraying sandwich. To optimize the preparation conditions of the CZTS films, two series of experiments are performed. In the first series, the sprayed duration was changed from 20 to 60 min. In each series, effect annealing was investigated. The X-ray diffraction shows, on one hand, that the best crystalline was obtained after annealing for 60 min as sprayed duration. On the other hand, these CZTS films exhibit the Kesterite structure with preferential orientation along the [112] direction. Raman spectrum indicated the presence of principal Stannite peak 336 cm−1. SEM showed that the surface of CZTS was uniform. After the annealing treatment, we estimated the optical band-gap energy of the CZTS thin film exhibiting the best crystalline as 1.5 eV which is quite close to the optimum value for a solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. X. Lin, J. Kavalakkatt, K. Kornhuber, D. Abou-Ras, S. Schorr, M.C. Lux-Steiner, A. Ennaoui, RSC Adv. (2012). doi:10.1039/C2RA21293E

    Google Scholar 

  2. H. Katagiri, N. Ishigaki, T. Ishida, K. Saito, Jpn. J. Appl. Phys. (2001). doi:10.1143/JJAP.40.500

    Google Scholar 

  3. S.M. Bhosale, M.P. Suryawanshi, J.H. Kim, A.V. Moholkar, Ceram.Int. (2015). doi:10.1016/j.ceramint.2015.02.124

    Google Scholar 

  4. K. Tanaka, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 91, 13 (2007)

    Article  Google Scholar 

  5. A. Redinger, S. Siebentritt, Appl. Phys. Lett. 97, 9 (2010)

    Article  Google Scholar 

  6. S. Kodiagala, in Solar Cells Research and Application Perspectives, ed. by P. Vasekar, T. Pdhakal (Elsevier, New York, 2013), p. 46

    Google Scholar 

  7. K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 95, 3 (2011)

    Article  Google Scholar 

  8. N. Nakayama, K. Ito, Appl. Surf. Sci. 92, 2 (1996)

    Article  Google Scholar 

  9. L. Isac, A. Duta, J. Schoonman, A. Kriza, Optoelectron ADV. 9, 5 (2007)

    Google Scholar 

  10. N. Poornima, A. Jose, C. Sudha Kartha, K.P. Vijayakumar, Energy Procedia (2012). doi:10.1016/j.egypro.2012.02.042

    Google Scholar 

  11. G.G. Ninan, C. Sudha Kartha, K.P. Vijayakumar, J. Anal. Appl. Pyrolysis (2016). doi:10.1016/j.jaap.2016.04.016

    Google Scholar 

  12. S.M. Bhosale, M.P. Suryawanshi, J.H. Kim, A.V. Moholkar, Ceram. Int. (2015). doi:10.1016/j.ceramint.2015.02.124

    Google Scholar 

  13. E. Valkonen, C.G. Ribbing, J.E. Sundgren, Int. Soc. Optics Photonics (1986). doi:10.1117/12.938385

    Google Scholar 

  14. J. Henry, K. Mohnaraj, G. Sivakumar, J. Asian Ceram. Soc. 4, 1 (2016)

    Article  Google Scholar 

  15. S.M. Bhoale, M.P. Suryawanshi, M.A. Gaikwad, J.H. Kim, A.V. Moholkar, Mater. Lett. (2014). doi:10.1016/j.matlet.2014.04.131

    Google Scholar 

  16. V.G. Rajeshmon, M.R. RajeshMenon, C. SudhaKartha, K.P. Vijayakumar, J Anal Appl Pyrolysis (2014). doi:10.1016/j.jaap.2014.10.014

    Google Scholar 

  17. P.Y. Lee, S.P. Chang, S.J. Chang, ECS J Solid State Sci Technol (2013). doi:10.1149/2.040311jss

    Google Scholar 

  18. H. Park, Y.H. Hwang, B.S. Bae, J. Sol–Gel Sci. Technol (2013). doi:10.1007/s10971-012-2703-0

    Google Scholar 

  19. U. Chalapathi, S. Uthanna, V. Sundara Raja, Sol. Energy Mater. Sol. Cells (2015). doi:10.1016/j.solmat.2014.09.035

    Google Scholar 

  20. S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, J.Y. Lee, Sol. Energy Mater. Sol. Cells (2011). doi:10.1016/j.solmat.2011.07.005

    Google Scholar 

  21. R. Touati, M. BenRabeh, M. Kanzari, Thin Solid Films (2015). doi:10.1016/j.tsf.2014.12.032

    Google Scholar 

  22. Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja, Sol. Energy Mater. Sol. Cells (2009). doi:10.1016/j.solmat.2009.01.011

    Google Scholar 

  23. M. Ben Rabeh, M. Kanzari, Thin solid films 519, 21 (2011)

    Google Scholar 

  24. H. Yoo, J. Kim, Sol. Energy Mater. Sol. Cells (2011). doi:10.1016/j.solmat.2010.04.060

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahjoubi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahjoubi, S., Bitri, N., Bouzouita, H. et al. Effect of the annealing and the spraying time on the properties of CZTS thin films prepared by the “Spray sandwich” technique. Appl. Phys. A 123, 452 (2017). https://doi.org/10.1007/s00339-017-1020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1020-4

Navigation