Skip to main content
Log in

Effect of pH value of probe molecule on the graphene oxide-based surface enhanced Raman scattering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The dependence of graphene oxide (GO)-based surface enhanced Raman scattering (SERS) on the pH value of probe molecule was investigated. Water-soluble copper phthalocyanine (TSCuPc) was used as probe molecule and its pH value was adjusted with HCl and NaOH solution. The Raman spectra of TSCuPc with pH equaling 3, 8, and 11 on GO base were tested, respectively. The results show that both Raman enhanced intensity and full width at half maximum (FWHM) of characteristic peaks vary with the pH value of TSCuPc. It is shown that there is no obvious spectral widening of TSCuPc characteristic peaks when TSCuPc is neutral or acidic, and the chemical enhancement intensity of neutral TSCuPc on GO is biggest. In contrast, when TSCuPc is alkaline, the characteristic Raman peaks between 1350 and 1600 cm−1 of TSCuPc on GO are much wider and the intensities of characteristic peaks decrease considerably. The reasons for the pH dependence of GO-based Raman spectra were explored by comparing the wettability of molecule droplet on GO and the absorbance of different pH-adjusted TSCuPc films. It is found that the effect of molecule’s pH value on SERS can be contributed to the differences of concentration and distributions on GO surface for varied pH-treated molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. El-Ansary, L.M. Faddah, Nanoparticles as biochemical sensors. Nanotechnol. Sci. Appl. 3(1), 65–76 (2010)

    Article  Google Scholar 

  2. S.D. Hudson, G. Chumanov, Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal. Bioanal. Chem. 394(3), 679–686 (2009)

    Article  Google Scholar 

  3. R.A. Tripp, R.A. Dluhy, Y. Zhao, Novel nanostructure for SERS biosensing. Nano Today 3(3), 31–37 (2008)

    Article  Google Scholar 

  4. Kleinman S.L. PaxtonWF, A.N. Basuray, J.F. Stoddart, R.P. Van Duyne, Surface-enhanced Raman spectroelectrochemistry of TTF-modified self-assembled monolayers. J. Phys. Chem. Lett. 2(10), 1145–1149 (2011)

    Article  Google Scholar 

  5. E. Cortes, P.G. Etchegoin, E.C. Le Ru, A. Fainstein, M.E. Vela, R.C. Salvarezza, Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132(51), 18034–18037 (2010)

    Article  Google Scholar 

  6. M. Sun, Z. Zhang, H. Zheng, X. Hongxing, In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci. Rep. 2(647), 1–4 (2012)

    Google Scholar 

  7. X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, Z.Q. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues. Anal. Bioanal. Chem. 394(7), 1729–1745 (2009)

    Article  Google Scholar 

  8. B. Ren, G.K. Liu, X.B. Lian, Z.L. Yang, Z.Q. Tian, Raman spectroscopy on transition metals. Anal. Bioanal. Chem. 388(1), 29–45 (2007)

    Article  Google Scholar 

  9. B.N.J. Persson, K. Zhao, Z. Zhang, Chemical contribution to surface-enhanced Raman scattering. Phys. Rev. Lett. 96, 207401 (2006)

    Article  ADS  Google Scholar 

  10. S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang et al., Molecular selectivity of graphene-enhanced Raman scattering. Nano Lett. 15, 2892–2901 (2015)

    Article  ADS  Google Scholar 

  11. X. Ling, L. Xie, Y. Fang, X. Hua, H. Zhang, J. Kong et al., Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10(2), 553–561 (2010)

    Article  ADS  Google Scholar 

  12. X. Ling, W. Juanxia, X. Weigao, J. Zhang, Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy. Small 8(9), 1365–1372 (2012)

    Article  Google Scholar 

  13. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998)

    Article  Google Scholar 

  14. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Exmenenko et al., Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    Article  ADS  Google Scholar 

  15. Y. Lei, L. Li-jun, C. Hao, Z. Yan-yong, W. Hui-dan et al., Preparation and study of GO decorated with Au nanoparticles as SERS active substrate. J. Light Scatt. 27(4), 320–325 (2015)

    Google Scholar 

  16. H. Yang, H. Hailong, Z. Ni, C.K. Poh, C. Cong, J. Lin et al., Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces. Carbon 62, 422–429 (2013)

    Article  Google Scholar 

  17. Yu. Xinxin, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo et al., Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide. Am. Chem. Soc. 5(2), 952–958 (2011)

    Google Scholar 

  18. W. Liang, Yu. Xiaoyun Chen, Y.F. Sa, Y. Wang, W. Lin, Graphene oxide as a substrate for Raman enhancement. Appl. Phys. A 109(1), 81–85 (2012)

    Article  ADS  Google Scholar 

  19. L. Zhang, J. Xia, Q. Zhao, L. Liu, Z. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4), 537–544 (2010)

    Article  Google Scholar 

  20. X. Min-Min, Y.-X. Yuan, J.-L. Yao, S.-Y. Han, M. Wang, G. Ren-Ao, Adsorption of 2-amino-5-cyanopyridine on a gold surface as probed by surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 42, 324–331 (2011)

    Article  ADS  Google Scholar 

  21. C.Y. Panicker, H.T. Varghese, L. Ushakumari, Y.S. Mary, J. Sarkar, J. Chowdhury, Concentration and pH dependent SERS spectra of sulfanilic acid sodium salt on colloidal silver particles. J. Raman Spectrosc. 41, 944–951 (2010)

    Article  ADS  Google Scholar 

  22. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)

    Article  Google Scholar 

  23. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphene oxide 1:high-yield synthesis and flexibility of the particles. Carbon 42(14), 2929–2937 (2004)

    Google Scholar 

  24. W. Xu, N. Mao, J. Zhang, Graphene: a platform for surface-enhanced Raman spectroscopy. Small 9(8), 1206–1224 (2013)

    Article  Google Scholar 

  25. D. Xiao-feng, G. Rong, C. Pei-zhi, Recent development of contact angle measurement technique. PTCA (Part A Phys. Test) 44(2), 84–89 (2008)

    Google Scholar 

  26. Z. Zhen-guo, Contact angle and its application in surface chemistry research. Chem. Res. Appl. 12(4), 370–374 (2000)

    Google Scholar 

  27. S. Schumann, R.A. Hatton, T.S. Jones, Organic photovoltaic devices based on water-soluble copper phthalocyanine. Phys. Chem. C 115, 4916–4921 (2011)

    Article  Google Scholar 

  28. A.A.M. Farag, Optical absorption studies of copper phthalocyanine thin films. Opt. Laser Technol. 39(4), 728–732 (2007)

    Article  ADS  Google Scholar 

  29. H.-Q. Xiang, K. Tanaka, T. Kajiyama, Gas-Sensing properties of dilithium octacyano phthalocyanine Langmuir–Blodgett Films. Langmuir 18(23), 9102–9105 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Basic Research Cost for National Central University (No. 106112015CDJXY120011) and the visitor fund of Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-qing Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Sl., Du, Xq., Zeng, C. et al. Effect of pH value of probe molecule on the graphene oxide-based surface enhanced Raman scattering. Appl. Phys. A 123, 421 (2017). https://doi.org/10.1007/s00339-017-1010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1010-6

Keywords

Navigation