Applied Physics A

, 123:372 | Cite as

Correlated resistive/capacitive state variability in solid TiO2 based memory devices

  • Qingjiang Li
  • Iulia Salaoru
  • Ali Khiat
  • Hui Xu
  • Themistoklis Prodromakis


In this work, we experimentally demonstrated the correlated resistive/capacitive switching and state variability in practical TiO2 based memory devices. Based on filamentary functional mechanism, we argue that the impedance state variability stems from the randomly distributed defects inside the oxide bulk. Finally, our assumption was verified via a current percolation circuit model, by taking into account of random defects distribution and coexistence of memristor and memcapacitor.


TiO2 Bottom Electrode Resistive Switching Active Core High Resistive State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the financial support of the National Nature Science Foundation (61604177, 61471377), NUDT Science Support Program (JC-15-04-02), and EPSRC (EP/K017829/1).


  1. 1.
    L. Chua, IEEE Trans. Circuit Theory 18(5), 507 (1971)CrossRefGoogle Scholar
  2. 2.
    M. Di Ventra, Y.V. Pershin, L.O. Chua, Proc. IEEE 97(10), 1717 (2009)CrossRefGoogle Scholar
  3. 3.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453(7191), 80 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21(25–26), 2632 (2009)CrossRefGoogle Scholar
  5. 5.
    Y.V. Pershin, M. Di Ventra, Adv. Phys. 60(2), 145 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Q. Luo, X. Xu, H. Liu, H. Lv, T. Gong, S. Long, Q. Liu, H. Sun, W. Banerjee, L. Li, J. Gao, N. Lu, M. Liu, Nanoscale 8(34), 15629–15636 (2016)CrossRefGoogle Scholar
  7. 7.
    Q. Luo, X. Xu, H. Liu, H. Lv, T. Gong, S. Long, Q. Liu, H. Sun, W. Banerjee, L. Li, N. Lu, and M. Liu, presented at the 2015 IEEE International Electron Devices Meeting (IEDM) (2015)Google Scholar
  8. 8.
    S. Liu, N.J. Wu, A. Ignatiev, J. Li, J. Appl. Phys. 100(5), 056101 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Z.B. Yan, J.M. Liu, Sci. Rep. 3(8), 2482 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    I. Salaoru, A. Khiat, Q. Li, R. Berdan, T. Prodromakis, Appl. Phys. Lett. 103(23), 233513 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Q. Li, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodromakis, Sci. Rep. 4(3), 4522 (2014)Google Scholar
  12. 12.
    I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nat. Commun. 4, 1771 (2013)CrossRefGoogle Scholar
  13. 13.
    F. Miao, Y. Wei, I. Goldfarb, J.J. Yang, ACS Nano 6(3), 2312 (2012)CrossRefGoogle Scholar
  14. 14.
    H.Y. Peng, Y.F. Li, W.N. Lin, Y.Z. Wang, Sci. Rep. 2, 442 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    I. Salaoru, A. Khiat, Q. Li, R. Berdan, C. Papavassiliou, T. Prodromakis, J. Phys. D Appl. Phys. 47(14), 145102 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C.U.K. Jung, Adv. Mater. 20(6), 1154 (2008)CrossRefGoogle Scholar
  17. 17.
    D. Carta, I. Salaoru, A. Khiat, A. Regoutz, C. Mitterbauer, N.M. Harrison, T. Prodromakis, ACS Appl. Mater. Interfaces 8(30), 19605 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Yu, R. Jeyasingh, Y. Wu, H.S.P. Wong, Appl. Phys. Lett. 99(23), 232105 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S. Yu, X. Guan, H.S.P. Wong, IEEE Trans. Electron Devices 59(4), 1183 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Qingjiang Li
    • 1
  • Iulia Salaoru
    • 2
  • Ali Khiat
    • 2
  • Hui Xu
    • 1
  • Themistoklis Prodromakis
    • 2
  1. 1.College of Electronics Science and EngineeringNational University of Defense TechnologyChangshaChina
  2. 2.Nano Group, Department of Electronic and Computer Science, Southampton Nanofabrication CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations