Skip to main content
Log in

Multiferroic and visible light photocatalytic properties of six-layered perovskite oxide Nd6Ti4Fe2O20

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The layered perovskite-related oxide Nd6Ti4Fe2O20 was prepared by incorporating NdFeO3 in the host Nd2Ti2O7 using floating-zone melting technique. XRD and HRTEM results suggested that the material has a layered structure of n = 6 type. Nd6Ti4Fe2O20 exhibited spin glass-like behavior, and its magnetic behavior was affected by magnetic Nd3+ ions strongly at low temperature. The ferromagnetic and ferroelectric properties were observed by magnetic and PFM measurements at the room temperature. UV–Vis absorption spectroscopy revealed that the compound is a visible light absorbing photocatalyst with a direct band gap of 2.2 eV. In addition, the photocatalytic behaviors of bulk Nd6Ti4Fe2O20 were evaluated by photodegradation of rhodamine B under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Lichtenberg, A. Herrnberger, K. Wiedenmann, J. Mannhart, Prog. Solid State Chem 29, 1–70 (2001)

    Article  Google Scholar 

  2. F. Lichtenberg, A. Herrnberger, K. Wiedenmann, Prog. Solid State Chem 36, 253–387 (2008)

    Article  Google Scholar 

  3. H.G. Kim, J.S. Yoo, K.M. Ok, J. Mater. Chem. C 3, 5625–5630 (2015)

    Article  Google Scholar 

  4. C. Périllat-Merceroz, P. Roussel, M. Huvé, E. Capoen, S. Rosini, P. Gélin, R.-N. Vannier, G.H. Gauthier, J. Power Sources 274, 806–815 (2015)

    Article  Google Scholar 

  5. C. Chen, Z. Gao, H. Yan, M.J. Reece, J. Am. Ceram. Soc. 99, 523–530 (2016)

    Article  Google Scholar 

  6. E. Connolly, R. Tilley, J. Alloys Compd. 515, 63–67 (2012)

    Article  Google Scholar 

  7. D.W. Hwang, J.S. Lee, W. Li, S.H. Oh, J. Phys. Chem. B 107, 4963–4970 (2003)

    Article  Google Scholar 

  8. P. Liu, J. Nisar, B. Sa, B. Pathak, R. Ahuja, J. Phys. Chem. C 117, 13845–13852 (2013)

    Article  Google Scholar 

  9. H. Xue, Y. Zhang, J. Xu, X. Liu, Q. Qian, L. Xiao, Q. Chen, Catal. Commun 51, 72–76 (2014)

    Article  Google Scholar 

  10. Y. Shimada, H. Kiyama, Y. Tokura, Phys. Rev. B 75, 245125 (2007)

    Article  ADS  Google Scholar 

  11. Y. Shimada, H. Kiyama, Y. Tokura, J. Phys. Soc. Jpn 77, 033706 (2008)

    Article  ADS  Google Scholar 

  12. Z.M. Shao, S. Saitzek, P. Roussel, A. Ferri, É. A. Bruyer, M. Sayede, Rguiti, O. Mentré, R. Desfeux, Adv. Eng. Mater 13, 961–969 (2011)

    Article  Google Scholar 

  13. S.J. Patwe, V. Katari, N.P. Salke, S.K. Deshpande, R. Rao, M.K. Gupta, R. Mittal, S.N. Achary, A.K. Tyagi, J. Mater. Chem. C 3, 4570–4584 (2015)

    Article  Google Scholar 

  14. H.X. Yan, H.P. Ning, Y. Kan, P. Wang, M.J. Reece, J. Am. Ceram. Soc. 92, 2270–2275 (2009)

    Article  Google Scholar 

  15. L.Z. Huang, Y. Qiu, Y. Xi, S. Huang, Z. Tian, S.L. Yuan, J. Electroceram 31, 372–375 (2013)

    Article  Google Scholar 

  16. M. Scarrozza, A. Filippetti, V. Fiorentini, Eur. Phys. J. B 86, 128 (2013)

    Article  ADS  Google Scholar 

  17. H. Xing, G. Long, H. Guo, Y. Zou, C. Feng, G. Cao, H. Zeng, Z.A. Xu, J. Phys. Condens. Matter 23, 216005 (2011)

    Article  ADS  Google Scholar 

  18. H. Guo, H. Xing, J. Tong, Q. Tao, I. Watanabe, Z.A. Xu, J. Phys. Condens. Matter 26, 436002 (2014)

    Article  ADS  Google Scholar 

  19. A. Wolfel, F. Lichtenberg, S. van Smaalen, J. Phys. Condens. Matter 25, 076003 (2013)

    Article  ADS  Google Scholar 

  20. X.Y. Cheng, X.X. Wang, H.S. Yang, K.Q. Ruan, X.G. Li, J. Mater. Chem. C 3, 4482–4489 (2015)

    Article  Google Scholar 

  21. K. Parida, A. Nashim, S.K. Mahanta, Dalton Trans 40, 12839–12845 (2011)

    Article  Google Scholar 

  22. A. Nashim, K. Parida, Chem. Eng. J 215, 608–615 (2013)

    Article  Google Scholar 

  23. A. Nashim, K. Parida, J. Mater. Chem. C 2, 18405–18412 (2014)

    Article  Google Scholar 

  24. J.L. Ding, X.M. Lü, H.M. Shu, J.M. Xie, H. Zhang, Mater. Sci. Eng. B Adv 171, 31–34 (2010)

    Article  Google Scholar 

  25. L. Li, X. Wang, Y. Lan, W. Gu, S. Zhang, Ind. Eng. Chem. Res 52, 9130–9136 (2013)

    Article  Google Scholar 

  26. L. Li, M. Zhang, P. Tian, W. Gu, X. Wang, Ceram. Int 40, 13813–13817 (2014)

    Article  Google Scholar 

  27. Z. Gao, C. Lu, Y. Wang, S. Yang, H. He, Y. Yu, Sci. Rep UK 6, 24139 (2016)

    Article  ADS  Google Scholar 

  28. J. Guevarra, A. Schoenleber, S. van Smaalen, F. Lichtenberg, Acta Crystallogr. B 63, 183–189 (2007)

    Article  Google Scholar 

  29. A. Wolfel, P. Dorscht, F. Lichtenberg, S. van Smaalen, Acta Crystallogr. B 69, 137–144 (2013)

    Article  Google Scholar 

  30. S.J. Yuan, W. Ren, F. Hong, Y.B. Wang, J.C. Zhang, L. Bellaiche, S.X. Cao, G. Cao, Phys. Rev. B 87, 84405 (2013)

    ADS  Google Scholar 

  31. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  32. T. Moriya, Phys. Rev 120, 91 (1960)

    Article  ADS  Google Scholar 

  33. M.X. Chen, X.J. Xu, G.L. Yuan, M.H. Lu, S.T. Zhang, J. Yin, Z.G. Liu, Ceram. Int 40, 13961–13966 (2014)

    Article  Google Scholar 

  34. A.S. Borowiak, K. Okada, T. Kanki, B. Gautier, B. Vilquin, H. Tanaka, Appl. Surf. Sci 351, 531–536 (2015)

    Article  Google Scholar 

  35. S. Nanamatsu, M. Kimura, K. Doi, S. Matsushita, N. Yamada, Ferroelectrics 8, 511–513 (1974)

    Article  Google Scholar 

  36. H.W. Schmalle, T. Williams, A. Reller, A. Linden, J. Bednorz, Acta Crystallogr. B 49, 235–244 (1993)

    Article  Google Scholar 

  37. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627–637 (1966)

    Article  ADS  Google Scholar 

  38. A.T. Bell, Science 299, 1688–1691 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We appreciate support for the piezoresponse testing from the USTC center for Micao- and Nanoscale Research and Fabrication, University of Science and Technology of China. This work was financially supported by NSFC and National Basic Research Program of China (Grant Nos. 2012CB922003, 2015CB921201 and 51672003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keqing Ruan or Xiaoliang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Meng, D., Yang, H. et al. Multiferroic and visible light photocatalytic properties of six-layered perovskite oxide Nd6Ti4Fe2O20 . Appl. Phys. A 123, 301 (2017). https://doi.org/10.1007/s00339-017-0933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0933-2

Keywords

Navigation