Abstract
In this manuscript, synthesis of cobalt/poly vinyl alcohol (PVA)/gamma alumina nanocomposite via a simple room temperature, as well as its catalyst performance were explored. Brunauer–Emmett–Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were conducted. The surface area of the polymeric composite was obtained to be 280 m2/g. The cobalt loading on the nanocomposite was measured using inductivity couple plasma. Transmission electron microscopy analysis showed that the size of cobalt crystalline encapsulate inside the polymer was confined to 5 nm. Magnetic property analysis, using vibrating sample magnetometer, confirmed ferromagnetic nature of the composite. Thermo-gravimetric analyses were employed to explain the degradation process for the polymeric base nanocomposite. Temperature-programmed reduction was used to evaluate the structural form of cobalt oxide in nanocomposite. The catalysis activity was determined by Fischer–Tropsch synthesize, which showed a high catalyst selectivity to C2–C4 hydrocarbons.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
T. Keller, Recent all-composite and hybrid fibre-reinforced polymer bridges and buildings. Prog. Struct. Eng. Mater. 3, 132–140 (2001)
P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio, Mechanical response of single walled carbon nanotubes in polymer nanocomposites. Adv. Mater. 12, 750–753 (2000)
E.T. Thostenson, Z.F. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Comp. Sci. Tech. 61, 1899–1912 (2001)
P. Vandezande, L.E.M Gevers, I.F.J. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 373, 65–405 (2008)
D.A. Musale, A. Kumar, Solvent and pH resistance of surface crosslinked chitosan/poly (acrylonitrile) composite nanofiltration membranes. J. Appl. Polym. Sci. 7, 1782–1793 (2000)
S. Hatamie, V. Dhas, B.B. Kale, I.S. Mulla, S.N. Kale, Polymer-embedded stannic oxide nanoparticles as humidity sensors. J. Mater. Sci. Eng. C 29, 847–850 (2009)
A. Martínez, C. López, F. Márquez, I. Díaz, Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters, J. Catal. 220, 486–499 (2003)
C.R. Tanardi, A.F.M. Pinheiro, A. Nijmeijer, L. Winnubst, PDMS grafting of mesoporous γ-alumina membranes for nanofiltration of organic solvents. J. Membrane. Sci. 469, 471–477 (2014)
R.C. Reuel, C.H. Bartholomew, Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt. J. Catal. 85, 78–88 (1984)
A.S. Lisitsyn, A.V. Golovin, Y.I. V.L. Kuznetsov, Yermakov Properties of catalysts prepared by pyrolysis of Co2(CO)8 on silica containing surface Ti ions. J. Catal. 95, 527–538 (1985)
A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 77, 1–45 (2005)
A.J.V. Dillen, R.J.A.M Terörde, J.W. Geus, D.J. Lensveld, K.P.D. Jong, Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J. Catal. 216, 257–264 (2003)
E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. A:Gen. 161, 59–78 (1997)
S. Hatamie, M.V. Kulkarni, S.D. Kulkarni, B.B. Kale, R.S. Ningthoujam, R.K. Vatsa, S. N. Kale, Cobalt nanoparticles doped emaraldine salt of polyaniline: a promising room temperature magnetic semiconductor. J. Magn. Magnt. Mater. 322, 3926–3931 (2010)
S. Hatamie, S.D. Dhole, J. Ding, S.N. Kale, Encapsulation of cobalt nanoparticles in cross-linked-polymer cages. J. Magn. Magnt. Mater. 321, 2135–2138 (2010)
H.S. Potdar, K.W Jun, J.W. Bae, S.M. Kim, Y.J. Lee, Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route. Appl. Catal. A:Gen. 321,109–116 (2007)
Y.J.O. Asencios, M.R. Sun-Kou, Synthesis of high-surface-area γ-Al2O3 from aluminum scrap and its use for the adsorption of metals: Pb(II), Cd(II) and Zn(II). Appl. Surf. Sci. 258, 10002–10011 (2012)
S. Hatamie, M.M. Ahadian, M.A. Ghaiss, A. Iraji zad, R. Saber, B. Parseh, M.A. Oghabian, S. Shanehsazzadeh, Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis. Colloids Surf. B 146, 271–279 (2016)
Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen, C.H. Li, Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional lectrocatalyst for oxygen reduction and evolution reactions. Nanoscale 6, 15080–15089 (2014)
H. Schaper, E.B.M. Doesburg, P.H.M De Korte, Thermal stabilization of high surface area alumina. Solid. State. Ion. 16, 261–265 (1985)
Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47, 3538–3543 (2009)
S. Khosravani, M. Alaei, A.M. Rashidi, A. Ramazani, M. Ershadi, O/W emulsions stabilized with γ-alumina nanostructures for chemical enhanced oil recovery. Mater. Res. Bull. 48, 2186–2190 (2012)
W. Chu, L.N. Wang, P.N. Chernavskii, A.Y. Khodakov, Glow-discharge plasma-assisted design of cobalt catalysts for Fischer–Tropsch synthesis. Angew. Chem. 47, 5052–5055 (2008)
O. Saber, Novel self assembly behavior for γ-alumina nanoparticles. Particuology 10, 744–750 (2012)
N. Arora, B.R. Jagirdar, Carbonization of solvent and capping agent based enhancement in the stabilization of cobalt nanoparticles and their magnetic study. J. Mater. Chem. 22, 20671–20679 (2012)
A. Barbier, A. Hanif, J.A. Dalmon, G.A. Martin, Appl. Catal. A:Gen. 68, 333 (1998)
D.L. Leslie-Pelecky, R.D. Rieke, Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770–1783 (1996)
D.L. Leslie-Pelecky, X.Q. Zhang, R.D. Rieke, Self-stabilized magnetic colloids: ultrafine Co particles in polymers. J. Appl. Phys. 79, 5312–5314 (1996)
M.V. Kulikova, M.I. Ivantsov, M.N. Efimov, L.M. Zemtsov, P.A. Chernavskii, G.P. Karpacheva, S.N. Khadzhiev, Formation features of composite materials containing cobalt nanoparticles active in Fischer-Tropsch synthesis. Eur. Chem. Bull. 4, 181–185 (2015)
A.Y. Khodakov, W. Chu, P. Fongar, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007)
C. Ocal, S. Ferrer, N. Garcia, Cabrera–Mott mechanism for oxidation of metals explain diffusion opf metallic atoms through thin defective oxide layers. Surf. Sci. 163, 335–356 (1985)
W. Chu, P.A. Chernavskii, L. Gengembre, G.A. Pankina, P. Fongarland, A.Y. Khodakov, Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. J. Catal. 252, 215–230 (2007)
S. Rane, Ø.J. Borg, J. Yang, E. Rytter, A. Holmen, Effect of alumina phase on hydrocarbon selectivity in Fischer-Tropsch synthesis. Appl. Catal. A 388, 160–167 (2010)
M.R. Hemmati, M. Kazemeini, F. Khorasheh, J. Zarkesh, A. Rashidi, Cobalt supported on CNTs-covered γ- and nano-structured alumina catalysts utilized for wax selective Fischer-Tropsch synthesis. J. Nat. Gas. Chem. 21, 713–721 (2012)
S.B. Amor, G. Baud, M. Jacquet, G. Nanse, P. Fioux, M. Nardin, XPS characterisation of plasma-treated and alumina-coated PMMA. Appl .Surf. Sci. 153, 172–183 (2000)
G. Spina, B. Bonelli, P. Palmero, L. Montanaro, An IR and XPS spectroscopy assessment of the physico-chemical surface properties of alumina–YAG nanopowders. Mater. Chem. Phys. 143, 286–295 (2013)
A. Tavasoli, K. Sadagiani, F. Khorashe, A.A. Seifkordi, A.A. Rohani, A. Nakhaeipour, Cobalt supported on carbon nanotubes: a promising novel Fischer–Tropsch synthesis catalyst. Fuel Process Technol. 89, 491–498 (2008)
T. Nomura, N. Okinaka, T. Akiyama, Impregnation of porous material with phase change material for thermal energy storage. Mater. Chem. Phys. 115, 846–850 (2009)
J.A. Delgado, C. Clavera, S. Castillónc, D. Curulla-Ferréd, V.V. Ordomskye, C. Godardb, Fischer–Tropsch synthesis catalysed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction. Appl. Catal. A: Gen. 513, 39–46 (2016)
M. Saeys, K.F. Tan, J. Chang, A. Borgna, Improving the stability of cobalt Fischer–Tropsch catalysts by boron promotion. Ind. Eng. Chem. Res. 49, 11098–11100 (2010)
G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu, F. Kapteijn, A.J. Dillen, K.P. Jong, Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 128, 3956–3964 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hatamie, S., Ahadian, M.M., Rashidi, A. et al. Novel synthesis of cobalt/poly vinyl alcohol/gamma alumina nanocomposite for catalytic application. Appl. Phys. A 123, 341 (2017). https://doi.org/10.1007/s00339-017-0913-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-017-0913-6