Skip to main content
Log in

Novel synthesis of cobalt/poly vinyl alcohol/gamma alumina nanocomposite for catalytic application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this manuscript, synthesis of cobalt/poly vinyl alcohol (PVA)/gamma alumina nanocomposite via a simple room temperature, as well as its catalyst performance were explored. Brunauer–Emmett–Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were conducted. The surface area of the polymeric composite was obtained to be 280 m2/g. The cobalt loading on the nanocomposite was measured using inductivity couple plasma. Transmission electron microscopy analysis showed that the size of cobalt crystalline encapsulate inside the polymer was confined to 5 nm. Magnetic property analysis, using vibrating sample magnetometer, confirmed ferromagnetic nature of the composite. Thermo-gravimetric analyses were employed to explain the degradation process for the polymeric base nanocomposite. Temperature-programmed reduction was used to evaluate the structural form of cobalt oxide in nanocomposite. The catalysis activity was determined by Fischer–Tropsch synthesize, which showed a high catalyst selectivity to C2–C4 hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. T. Keller, Recent all-composite and hybrid fibre-reinforced polymer bridges and buildings. Prog. Struct. Eng. Mater. 3, 132–140 (2001)

  2. P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio, Mechanical response of single walled carbon nanotubes in polymer nanocomposites. Adv. Mater. 12, 750–753 (2000)

    Article  Google Scholar 

  3. E.T. Thostenson, Z.F. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Comp. Sci. Tech. 61, 1899–1912 (2001)

  4. P. Vandezande, L.E.M Gevers, I.F.J. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 373, 65–405 (2008)

    Google Scholar 

  5. D.A. Musale, A. Kumar, Solvent and pH resistance of surface crosslinked chitosan/poly (acrylonitrile) composite nanofiltration membranes. J. Appl. Polym. Sci. 7, 1782–1793 (2000)

  6. S. Hatamie, V. Dhas, B.B. Kale, I.S. Mulla, S.N. Kale, Polymer-embedded stannic oxide nanoparticles as humidity sensors. J. Mater. Sci. Eng. C 29, 847–850 (2009)

    Article  Google Scholar 

  7. A. Martínez, C. López, F. Márquez, I. Díaz, Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters, J. Catal. 220, 486–499 (2003)

    Article  Google Scholar 

  8. C.R. Tanardi, A.F.M. Pinheiro, A. Nijmeijer, L. Winnubst, PDMS grafting of mesoporous γ-alumina membranes for nanofiltration of organic solvents. J. Membrane. Sci. 469, 471–477 (2014)

    Article  Google Scholar 

  9. R.C. Reuel, C.H. Bartholomew, Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt. J. Catal. 85, 78–88 (1984)

    Article  Google Scholar 

  10. A.S. Lisitsyn, A.V. Golovin, Y.I. V.L. Kuznetsov, Yermakov Properties of catalysts prepared by pyrolysis of Co2(CO)8 on silica containing surface Ti ions. J. Catal. 95, 527–538 (1985)

    Article  Google Scholar 

  11. A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 77, 1–45 (2005)

  12. A.J.V. Dillen, R.J.A.M Terörde, J.W. Geus, D.J. Lensveld, K.P.D. Jong, Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J. Catal. 216, 257–264 (2003)

    Article  Google Scholar 

  13. E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. A:Gen. 161, 59–78 (1997)

    Article  Google Scholar 

  14. S. Hatamie, M.V. Kulkarni, S.D. Kulkarni, B.B. Kale, R.S. Ningthoujam, R.K. Vatsa, S. N. Kale, Cobalt nanoparticles doped emaraldine salt of polyaniline: a promising room temperature magnetic semiconductor. J. Magn. Magnt. Mater. 322, 3926–3931 (2010)

  15. S. Hatamie, S.D. Dhole, J. Ding, S.N. Kale, Encapsulation of cobalt nanoparticles in cross-linked-polymer cages. J. Magn. Magnt. Mater. 321, 2135–2138 (2010)

  16. H.S. Potdar, K.W Jun, J.W. Bae, S.M. Kim, Y.J. Lee, Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route. Appl. Catal. A:Gen. 321,109–116 (2007)

    Article  Google Scholar 

  17. Y.J.O. Asencios, M.R. Sun-Kou, Synthesis of high-surface-area γ-Al2O3 from aluminum scrap and its use for the adsorption of metals: Pb(II), Cd(II) and Zn(II). Appl. Surf. Sci. 258, 10002–10011 (2012)

    Article  ADS  Google Scholar 

  18. S. Hatamie, M.M. Ahadian, M.A. Ghaiss, A. Iraji zad, R. Saber, B. Parseh, M.A. Oghabian, S. Shanehsazzadeh, Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis. Colloids Surf. B 146, 271–279 (2016)

    Article  Google Scholar 

  19. Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen, C.H. Li, Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional lectrocatalyst for oxygen reduction and evolution reactions. Nanoscale 6, 15080–15089 (2014)

  20. H. Schaper, E.B.M. Doesburg, P.H.M De Korte, Thermal stabilization of high surface area alumina. Solid. State. Ion. 16, 261–265 (1985)

    Article  Google Scholar 

  21. Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47, 3538–3543 (2009)

    Article  Google Scholar 

  22. S. Khosravani, M. Alaei, A.M. Rashidi, A. Ramazani, M. Ershadi, O/W emulsions stabilized with γ-alumina nanostructures for chemical enhanced oil recovery. Mater. Res. Bull. 48, 2186–2190 (2012)

    Article  Google Scholar 

  23. W. Chu, L.N. Wang, P.N. Chernavskii, A.Y. Khodakov, Glow-discharge plasma-assisted design of cobalt catalysts for Fischer–Tropsch synthesis. Angew. Chem. 47, 5052–5055 (2008)

    Article  Google Scholar 

  24. O. Saber, Novel self assembly behavior for γ-alumina nanoparticles. Particuology 10, 744–750 (2012)

  25. N. Arora, B.R. Jagirdar, Carbonization of solvent and capping agent based enhancement in the stabilization of cobalt nanoparticles and their magnetic study. J. Mater. Chem. 22, 20671–20679 (2012)

    Article  Google Scholar 

  26. A. Barbier, A. Hanif, J.A. Dalmon, G.A. Martin, Appl. Catal. A:Gen. 68, 333 (1998)

  27. D.L. Leslie-Pelecky, R.D. Rieke, Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770–1783 (1996)

    Article  Google Scholar 

  28. D.L. Leslie-Pelecky, X.Q. Zhang, R.D. Rieke, Self-stabilized magnetic colloids: ultrafine Co particles in polymers. J. Appl. Phys. 79, 5312–5314 (1996)

    Article  ADS  Google Scholar 

  29. M.V. Kulikova, M.I. Ivantsov, M.N. Efimov, L.M. Zemtsov, P.A. Chernavskii, G.P. Karpacheva, S.N. Khadzhiev, Formation features of composite materials containing cobalt nanoparticles active in Fischer-Tropsch synthesis. Eur. Chem. Bull. 4, 181–185 (2015)

  30. A.Y. Khodakov, W. Chu, P. Fongar, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007)

    Article  Google Scholar 

  31. C. Ocal, S. Ferrer, N. Garcia, Cabrera–Mott mechanism for oxidation of metals explain diffusion opf metallic atoms through thin defective oxide layers. Surf. Sci. 163, 335–356 (1985)

  32. W. Chu, P.A. Chernavskii, L. Gengembre, G.A. Pankina, P. Fongarland, A.Y. Khodakov, Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. J. Catal. 252, 215–230 (2007)

    Article  Google Scholar 

  33. S. Rane, Ø.J. Borg, J. Yang, E. Rytter, A. Holmen, Effect of alumina phase on hydrocarbon selectivity in Fischer-Tropsch synthesis. Appl. Catal. A 388, 160–167 (2010)

    Article  Google Scholar 

  34. M.R. Hemmati, M. Kazemeini, F. Khorasheh, J. Zarkesh, A. Rashidi, Cobalt supported on CNTs-covered γ- and nano-structured alumina catalysts utilized for wax selective Fischer-Tropsch synthesis. J. Nat. Gas. Chem. 21, 713–721 (2012)

  35. S.B. Amor, G. Baud, M. Jacquet, G. Nanse, P. Fioux, M. Nardin, XPS characterisation of plasma-treated and alumina-coated PMMA. Appl .Surf. Sci. 153, 172–183 (2000)

  36. G. Spina, B. Bonelli, P. Palmero, L. Montanaro, An IR and XPS spectroscopy assessment of the physico-chemical surface properties of alumina–YAG nanopowders. Mater. Chem. Phys. 143, 286–295 (2013)

    Article  Google Scholar 

  37. A. Tavasoli, K. Sadagiani, F. Khorashe, A.A. Seifkordi, A.A. Rohani, A. Nakhaeipour, Cobalt supported on carbon nanotubes: a promising novel Fischer–Tropsch synthesis catalyst. Fuel Process Technol. 89, 491–498 (2008)

  38. T. Nomura, N. Okinaka, T. Akiyama, Impregnation of porous material with phase change material for thermal energy storage. Mater. Chem. Phys. 115, 846–850 (2009)

    Article  Google Scholar 

  39. J.A. Delgado, C. Clavera, S. Castillónc, D. Curulla-Ferréd, V.V. Ordomskye, C. Godardb, Fischer–Tropsch synthesis catalysed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction. Appl. Catal. A: Gen. 513, 39–46 (2016)

    Article  Google Scholar 

  40. M. Saeys, K.F. Tan, J. Chang, A. Borgna, Improving the stability of cobalt Fischer–Tropsch catalysts by boron promotion. Ind. Eng. Chem. Res. 49, 11098–11100 (2010)

    Article  Google Scholar 

  41. G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu, F. Kapteijn, A.J. Dillen, K.P. Jong, Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 128, 3956–3964 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadie Hatamie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatamie, S., Ahadian, M.M., Rashidi, A. et al. Novel synthesis of cobalt/poly vinyl alcohol/gamma alumina nanocomposite for catalytic application. Appl. Phys. A 123, 341 (2017). https://doi.org/10.1007/s00339-017-0913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0913-6

Keywords

Navigation