Skip to main content
Log in

Deposition of fan-shaped ZnMoO4 on ZnCo2O4 nanowire arrays for high electrochemical performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, fan-shaped ZnMoO4 is deposited on flower-like ZnCo2O4 nanowire arrays by two-step hydrothermal method. ZnCo2O4 nanowire is synthesized first and used as the backbone to support ZnMoO4. The flower-like ZnCo2O4 nanowire arrays are fully overspread by ZnMoO4. And this unique structure shows a high capacitance of 1506 F g−1 when used as electrode for supercapacitor at a current density of 1 A g−1 and a good cycling ability (5000 cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Chem. Rev. 115, 9869 (2015)

    Article  Google Scholar 

  2. J.D. Blakemore, R.H. Crabtree, G.W. Brudvig, Chem. Rev. 115, 12974 (2015)

    Article  Google Scholar 

  3. T.Y. Ma, J.R. Ran, S. Dai, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 54, 4646 (2015)

    Article  Google Scholar 

  4. T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 55, 1138 (2016)

    Article  Google Scholar 

  5. T. Lin, I. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Science 350, 1508 (2015)

    Article  ADS  Google Scholar 

  6. L. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, Adv. Energy Mater. 5, 1400977 (2015)

    Article  Google Scholar 

  7. X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Angew. Chem. Int. Ed. 126, 1880 (2014)

    Article  Google Scholar 

  8. B. Wang, X. Fang, H. Sun, S. He, J. Ren, Y. Zhang, H. Peng, Adv. Mater. 27, 7854 (2015)

    Article  Google Scholar 

  9. Z.X. Yin, S. Zhang, Y.J. Chen, P. Gao, C.L. Zhu, P.P. Yang, L.H. Qi, J. Mater. Chem. A 3, 739–745 (2015)

    Article  Google Scholar 

  10. J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang, Chem. Commun. 48, 4213 (2008)

    Article  Google Scholar 

  11. R.K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, J. Phys. Chem. C 112, 1825 (2008)

    Article  Google Scholar 

  12. B. Wang, T. Zhu, H.B. Wu, R. Xu, J.S. Chen, X.W. Lou, Nanoscale 4, 2145 (2012)

    Article  ADS  Google Scholar 

  13. M. Fang, X.L. Tan, M. Liu, S.H. Kang, X.Y. Hu, L.D. Zhang, CrystEngComm 13, 4915 (2011)

    Article  Google Scholar 

  14. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.B. Zhao, H.J. Fan, ACS Nano 6, 5531 (2012)

    Article  Google Scholar 

  15. L.L. Zhang, R. Zhou, X.S. Zhao, J. Mater. Chem. 20, 5983 (2010)

    Article  Google Scholar 

  16. T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater. 9, 146–151 (2010)

    Article  ADS  Google Scholar 

  17. G.H. Zhang, T.H. Wang, X.Z. Yu, H.N. Zhang, H. G. Duan, B. A. Lu, Nano Energy 2, 586 (2013)

    Article  Google Scholar 

  18. H.N. Zhang, Y.J. Chen, W.W. Wang, G.H. Zhang, M. Zhuo, H.M. Zhang, T. Yang, Q.H. Li, T.H. Wang, J. Mater. Chem. A 1, 8593 (2013)

    Article  Google Scholar 

  19. M. Davis, C. Guemeci, B. Black, C. Korzeniewski, L. Hope-Weeks, RSC Adv. 2, 2061 (2012)

    Article  Google Scholar 

  20. X. Song, Q. Ru, B.B. Zhang, S.J. Hu, B.N. An, J. Alloys Compd. 585, 518 (2014)

    Article  Google Scholar 

  21. G. Zhou, J. Zhu, Y.J. Chen, L. Mei, X.C. Duan, G.H. Zhang, L.B. Chen, T.H. Wang, B.G. Lu, Electrochim. Acta 123, 450 (2014)

    Article  Google Scholar 

  22. H. Wu, Z. Lou, H. Yang, G.Z. Shen, Nanoscale 7, 1921 (2015)

    Article  ADS  Google Scholar 

  23. S. Chen, M. Xue, Y. Q. Li, Y. Pan, L. K. Zhu, D. L. Zhang, Q. R. Fang, S. L. Qiu, Inorg. Chem. Front. 2, 177 (2015)

    Article  Google Scholar 

  24. B. Liu, B.Y. Liu, Q.F. Wang, X.F. Wang, Q.Y. Xiang, D. Chen, G.Z. Shen, ACS Appl. Mater. Interfaces 5, 10011 (2013)

    Article  Google Scholar 

  25. P. Meduri, E. Clark, J.H. Kim, E. Dayalan, G.U. Sumanasekera, M.K. Sunkara, Nano Lett. 12, 1784–1788 (2012)

    Article  ADS  Google Scholar 

  26. S. Xiong, J.S. Chen, X.W. Lou, H.C. Zeng, Adv. Funct. Mater. 22, 861–871 (2012)

    Article  Google Scholar 

  27. T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, Adv. Mater. 22, 347 (2010)

    Article  ADS  Google Scholar 

  28. H.L. Wang, Q.M. Gao, L. Jiang, Small 7, 2454 (2011)

    Google Scholar 

  29. H. Jiang, J. Ma, C.Z. Li, Chem. Commun. 48, 4465 (2012)

    Article  Google Scholar 

  30. H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, H.Y. Wu, Z.Y. Zhang, Y.Y. Yang, J. Mater. Chem. 21, 10504 (2011)

    Article  Google Scholar 

  31. G. Q. Zhang, H. B. Wu, H. E. Hoster, M. B. Chan-park, X. W. Lou, Energy Environ. Sci. 5, 9453 (2012)

    Article  Google Scholar 

  32. C.Z. Yuan, J.Y. Li, L.R. Hou, X.G. Zhang, L.F. Shen, X.W. Lou, Adv. Funct. Mater 22, 4592 (2012)

    Article  Google Scholar 

  33. J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Adv. Mater 23, 2076 (2011)

    Article  Google Scholar 

  34. C. Zhou, Y. Zhang, Y. Li, J. Liu, Nano Lett. 13, 2078 (2013)

    Article  ADS  Google Scholar 

  35. C. Mazzocchia, C. Aboumrad, C. Diagne, E. Tempesti, J.M. Herrmann, G. Thomas, Catal. Lett. 10, 181–191 (1991)

    Article  Google Scholar 

  36. J. Kiwi, K.R. Thampi, M. Gratzel, J. Chem. Soc. Chem. Commun. 23,1690–1692 (1990)

    Article  Google Scholar 

  37. D. Spassky, S. Ivanov, I. Kitaeva, V. Kolobanov, V. Mikhailin, L. Ivleva, I. Voronina, Phys. Status Solidi C 2, 65–68 (2005)

    Article  ADS  Google Scholar 

  38. H. Barry, F. Moore, D. Robitaille, US Pat. 3 726694, (1973)

    Google Scholar 

  39. N.N. Leyzerovich, K.G. Bramnik, T.Buhrmester, H. Ehrenberg, H. Fuess, J. Power Sources 127, 76–84 (2004)

    Article  ADS  Google Scholar 

  40. S.S. Kim, S. Ogura, H. Ikuta, Y. Uchimoto, M. Wakihara, Chem. Lett. 30, 760–761 (2001)

    Article  Google Scholar 

  41. V.B. Mikhailik, H. Kraus, D. Wahl, M.S. Mykhaylyk, Phys. Status Solidi B 242, R17–R19 (2005)

    Article  ADS  Google Scholar 

  42. R. Sundaram, K.S. Nagaraja, Sens. Actuators B 101, 353–360 (2004)

    Article  Google Scholar 

  43. Y. Liang, P. Liu, H. B. Li, G. W. Yang, Cryst. Growth Design 12, 4487–4493 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the projects (Nos. 21371007 and 21675001) from National Natural Science Foundation of China, Anhui Provincial Natural Science Foundation for Distinguished Youth (1408085J03), the Programs for Science and Technology Development of Anhui Province (1501021019, 1604a0902180) and the Program for Innovative Research Team at Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 95 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Zhang, X. Deposition of fan-shaped ZnMoO4 on ZnCo2O4 nanowire arrays for high electrochemical performance. Appl. Phys. A 123, 290 (2017). https://doi.org/10.1007/s00339-017-0912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0912-7

Keywords

Navigation