Skip to main content
Log in

Influence of the concentration of reducing agent on gold nanoparticles decorated reduced graphene oxide and its ammonia sensing performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gold nanoparticles decorated reduced graphene oxide were synthesized with various concentrations of ascorbic acid. Phase structure and the variation in particle size were analysed by XRD studies and SEM image, respectively. The extent of reduction in graphene oxide was analysed by different techniques. Then the sensor was fabricated by simple drop casting method on a glass and the electrical contacts were provided by silver electrodes. The electrical conductivity of the films was measured by I–V measurements. Electrochemical impedance spectroscopy was employed to monitor the charge transfer at the interface of electrode and the sample. Finally the ammonia sensing of the fabricated films was studied by chemiresisitive method and the results are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Timmer, W. Olthuis, A. Van Den Berg, Ammonia sensors and their applications—a review. Sens. Actuators B 107, 666–677 (2005)

    Article  Google Scholar 

  2. G.K. Mani, J.B.B. Rayappan, A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B. 183, 459–466 (2013)

    Article  Google Scholar 

  3. C.-Y. Shen, C.-P. Huang, W.-T. Huang, Gas-detecting properties of surface acoustic wave ammonia sensors. Sens. Actuators B. 101, 1–7 (2004)

    Article  Google Scholar 

  4. S.K. Mishra, D. Kumari, B.D. Gupta, Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sens. Actuators B. 171–172, 976–983 (2012)

    Article  Google Scholar 

  5. F. Rigonia, S. Tognolini, P. Borghetti, G. Drera, S. Pagliar, A. Goldoni, L. Sangaletti, Environmental monitoring of low-ppb ammonia concentrations based on single-wall carbon nanotube chemiresistor gas sensors: detection limits, response dynamics, and moisture effects. Proced. Eng. 87, 716–719 (2014)

    Article  Google Scholar 

  6. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, A survey on gas sensing technology. Sensors 12, 9635–9665, (2012)

    Article  Google Scholar 

  7. R. Ghosh, A. Midya, S. Santra, S.K. Ray, P.K. Guha, Chemically reduced graphene oxide for ammonia detection at room temperature. ACS. Appl. Mater. Interfac 5(15), 7599–7603, (2013)

    Article  Google Scholar 

  8. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 3019–3023 (2011)

    Article  Google Scholar 

  9. H. Liu, L. Zhang, Y. Guo, C. Cheng, L. Yang, L. Jiang, Y. Gui, H. Wenping, Y. Liu, D. Zhu, Reduction of graphene oxide to highly conductive graphene by Lawesson’s reagent and its electrical applications. J. Mater. Chem. C 1, 3104 (2013)

    Article  Google Scholar 

  10. S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, J. Chen, Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst 138, 2877–2882 (2013)

    Article  ADS  Google Scholar 

  11. D.Chandra Tiwari, Priyanka Atri, Rishi Sharma, Sensitive detection of ammonia by reduced graphene oxide/ polypyrrole nanocomposites. Synt. Metals 203, 228–234 (2015)

    Article  Google Scholar 

  12. S.K. Movahed, M. Fakharian, M. Dabiri, A. Bazgir, Gold nanoparticles decorated reduced graphene oxide sheets with significantly high catalytic activity for Ullmann homocoupling. RSC Adv. 4, 5243–5247 (2014)

    Article  Google Scholar 

  13. T. Rattana, S. Chaiyakun, N. Witit-anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, P. Limsuwan, Preparation and characterization of graphene oxide nanosheets. Proced. Eng. 32, 759–764 (2012)

    Article  Google Scholar 

  14. J.I. Paredes, S. Villar-Rodil, A. Martı´nez-Alonso, J.M.D. Tascon, Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)

    Article  Google Scholar 

  15. S. Link, M.A. El-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)

    Article  Google Scholar 

  16. W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal. Chem. 79, 4215–4221 (2007)

    Article  Google Scholar 

  17. Y. Choi, H.S. Bae, E. Seo, S. Jang, K.H. Park, B.-S. Kim, Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J. Mater. Chem. 21, 15431 (2011)

    Article  Google Scholar 

  18. M.A. Velasco-Soto, S.A. Pérez-García, J. Alvarez-Quintana, Y. Cao, L. Nyborg, L. Licea-Jiménez, Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon 93, 967–973 (2015)

    Article  Google Scholar 

  19. S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4, 3974–3983 (2014)

    Article  Google Scholar 

  20. F. Pashaee, F. Sharifi, G. Fanchini, F. Lagugné-Labarthet, Tip-enhanced Raman spectroscopy of graphene-like and graphitic platelets on ultraflat gold nanoplates. Phys. Chem. Chem. Phys. 17, 21315–21322 (2015)

    Article  Google Scholar 

  21. F. Tuinstra, J.-L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970)

    Article  ADS  Google Scholar 

  22. M. Cheng, R. Yang, L. Zhang, Z. Shi, W. Yang, D. Wang, G. Xie, D. Shi, G. Zhang, Restoration of graphene from graphene oxide by defect repair. Carbon 50, 2581–2587 (2012)

    Article  Google Scholar 

  23. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  24. T. Zhou, F. Chen, K. Liu, H. Deng, Q. Zhang, J. Feng, F. Qiang, A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology 22, 045704 (2011)

    Article  ADS  Google Scholar 

  25. V.H. Pham, H.D. Pham, T.T. Dang, S.H. Hur, E.J. Kim, B.S. Kong, S. Kim, J.S. Chung, Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen. J. Mater. Chem. 22, 10530 (2012)

    Article  Google Scholar 

  26. Y. He, H. Cui, Synthesis of highly chemiluminescent graphene oxide/silver nanoparticle nano-composites and their analytical applications. J. Mater. Chem. 22, 9086 (2012)

    Article  Google Scholar 

  27. Q.T. Tran, H.T.M. Hoa, D.-H. Yoo, T.V. Cuong, S.H. Hur, J.S. Chung, E.J. Kim, P.A. Kohl, Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature. Sens. Actuators B 194, 45–50 (2014)

    Article  Google Scholar 

  28. M. Gautam, A. H. Jayatissa, Detection of organic vapors by graphene films functionalized with metallic nanoparticles. J. Appl. Phys. 112(11), 114326 (2012)

    Article  ADS  Google Scholar 

  29. N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, Y. Zhang, Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25, 025502 (2014)

    Article  ADS  Google Scholar 

  30. M. Gautam, A. Jayatissa, Graphene based field effect transistor for the detection of ammonia J. Appl. Phys. 112(6), 064304 (2012)

    Article  ADS  Google Scholar 

  31. G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. v. d. Brink, P.J. Kelly, Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008)

    Article  ADS  Google Scholar 

  32. M. Gautam, A.H. Jayatissa, Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid State Electron. 78, 159 (2012)

    Article  ADS  Google Scholar 

  33. J.L. Johnson, A. Behnam, Y. An, S.J. Pearton, A. Ural, Experimental study of graphitic nanoribbon films for ammonia sensing. J. Appl. Phys. 109, 124301 (2011)

    Article  ADS  Google Scholar 

  34. B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.-K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 58, 680 (2007)

    Article  Google Scholar 

  35. Q.T. Tran, T.M.H. Huynh, D. T. Tong, V. T. Tran, N. D. Nguyen, Synthesis and application of graphene–silver nanowires composite for ammonia gas sensing. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 045012 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivalingam, M.M., Balasubramanian, K. Influence of the concentration of reducing agent on gold nanoparticles decorated reduced graphene oxide and its ammonia sensing performance. Appl. Phys. A 123, 281 (2017). https://doi.org/10.1007/s00339-017-0910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0910-9

Keywords

Navigation