Skip to main content
Log in

Linear response formulism of a carbon nano-onion stringed to gold electrodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Density functional theory is used to investigate the electronic state of a carbon nano-onion conglobated by endohedral-ing the highly curved C20 fullerene within its parent fullerene C60. The Non-Equilibrium Green’s Function is later employed to examine the quantum transport when the carbon nano-onion, C20@C60 is stringed to the pair of gold electrodes of (001) plane. The computed results are evaluated and compared with C20 and C60 junctions. The calculated electronic parameters of these molecular junctions are utilized to extrapolate their two electrical parameters: current and conductance. The carbon nano-onion junction assembled from the C20 and C60 molecules displays the combined effect of their molecular junctions when organized separately. Also, the insertion of C20 molecule in the hollow cavity of C60 fullerene leads to the enhancement of its current and conductance in carbon nano-onion junction formed, when compared to the one constructed otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  2. D.M. Guldi, N. Martín, Fullerenes: from synthesis to optoelectronic properties. (Kluwer Academic Publishers, Dordrecht, 2002)

    Book  Google Scholar 

  3. F. Hebard, M.J. Rosseinskky, R.C. Haddon, D.W. Murphy, S.T. Glarum, T.T.M. Palstra, A.P. Ramirez, A.R. Kortan, Nature 350, 600 (1992)

    Article  ADS  Google Scholar 

  4. A. J. Winter, H. Kuzmany, Solid State Comm. 84, 935 (1992).

    Article  ADS  Google Scholar 

  5. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354 (1990)

    Article  ADS  Google Scholar 

  6. D. Ugarte, Chem. Phys. Lett. 198, 596 (1992)

    Article  ADS  Google Scholar 

  7. N. Sano, H. Wang, I. Alexandrou, J. Appl. Phys 92, 2783 (2002)

    Article  ADS  Google Scholar 

  8. Y. Saito, T. Yoshikawa, M. Inagaki, Chem. Phys. Lett. 204, 277 (1993)

    Article  ADS  Google Scholar 

  9. O. Takeo, N. Ichihito, N. Atsushi, Diam. Relat. Mater. 13, 1337 (2004)

    Article  Google Scholar 

  10. T. Gorelik, S. Urban, F. Falk, Chem. Phys. Lett. 373, 642 (2003)

    Article  ADS  Google Scholar 

  11. V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, Chem. Phys. Lett. 222, 343 (1994)

    Article  ADS  Google Scholar 

  12. X.H. Chen, F.M. Deng, J.X. Wang, Chem. Phys. Lett. 336, 201 (2001)

    Article  ADS  Google Scholar 

  13. T. Cabioch, J.P. Riviere, J. Delafond, J. Mater. Sci. 30, 4787 (1995)

    Article  ADS  Google Scholar 

  14. D. Santiago, G.G. Rodríguez-Calero, A. Palkar, D.B. Jimenez, D.H. Galvan, G. Casillas, A. Mayoral, M.J. Yacamán, L. Echegoyen, C.R. Cabrera, Langmuir 28, 17202 (2012)

    Article  Google Scholar 

  15. A.V. Okotrub, L.G. Bulusheva, V.L. Kuznesov, J. Phys. Chem. A 105, 9781 (2001)

    Article  Google Scholar 

  16. H. Li, Y. Li, Y. Zhang, C. Liang, H. Wang, B. Li, D. Adair, Z. Bakenov, Nanoscale Res. Lett 11, 432 (2016)

    Article  ADS  Google Scholar 

  17. C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 542 (2000)

    Article  ADS  Google Scholar 

  18. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna and P. Simon, Nature Nanotech. 5, 651 (2010)

    Article  ADS  Google Scholar 

  19. K.D. Sattler, Handbook of nanophysics: clusters and fullerenes, CRC Press, Florida, (2010)

    Google Scholar 

  20. J.W. Kang, H.J. Hwang, Nanotechnology 15, 614 (2004)

    Article  ADS  Google Scholar 

  21. M. Zeiger, N. Jäckel, V.N. Mochalin, V. Presser, J. Mater. Chem. A 4, 3172 (2016)

    Article  Google Scholar 

  22. L. Joly-Pottuz, N. Matsumoto, H. Kinoshita, Tribol. Int. 41, 69 (2008).

    Article  Google Scholar 

  23. D.A. Lovey, R.H. Romero, J. Appl. Phys. 114, 144305 (2013)

    Article  ADS  Google Scholar 

  24. P.L. Liu, J.Y. Hong, J. Appl. Phys. 114, 114301 (2013)

    Article  ADS  Google Scholar 

  25. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, B.v.. Issendorff, Nature 407, 60 (2000)

    Article  ADS  Google Scholar 

  26. Y.P. An, C.L. Yang, M.S. Wang, X.G. Ma, D.H. Wang, J. Chem. Phys. 131, 024311 (2009)

    Article  ADS  Google Scholar 

  27. Y.P. An, C.L. Yang, M.S. Wang, X.G. Ma, D.H. Wang, Curr. Appl. Phys. 10, 260 (2010)

    Article  ADS  Google Scholar 

  28. M. Kaur, R. S. Sawhney, D. Engles, R. P. Kaur, ICT Expr. 2, 159 (2016).

    Article  Google Scholar 

  29. M. Kaur, R.S. Sawhney, Mater. Today Proc. 3, 2422 (2016)

    Article  Google Scholar 

  30. M. Kaur, R.S. Sawhney, D. Engles, IEEE 2nd International Conference on Emerging Electronics, (ICEE) (IEEE, Bangalore, 2014), pp. 1–4

    Google Scholar 

  31. M. Kaur, R.S. Sawhney, D. Engles, J. Mater. Res. 31, 2025 (2016)

    Article  ADS  Google Scholar 

  32. M. Kaur, R.S. Sawhney, D. Engles, Mol. Phys 114, 3255 (2016)

    Article  ADS  Google Scholar 

  33. M. Kaur, R. S. Sawhney and D. Engles, J. Mol. Graph. Mod. 71, 184 (2017)

    Article  Google Scholar 

  34. L. Türker, J. Mol, Struct. (Theochem) 545, 207 (2001)

    Article  Google Scholar 

  35. F. Liu, L. Meng, S. Zheng. J. Mol. Struct. Theochem. 725, 17 (2005)

    Article  ADS  Google Scholar 

  36. K.J. Franke, J.I. Pascual, J. Phys. Cond. Matter. 24, 394002 (2012)

  37. A. Maiti, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 70, 3023 (1993)

    Article  ADS  Google Scholar 

  38. H. Guerin, J. Phys. B 30, L481 (1997)

    Article  ADS  Google Scholar 

  39. M. I. Heggie, M. Terrones, B. R. Eggen, G. Jungnickel, R. Jones, C. D. Latham, P. R. Briddon, H. Terrones, Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Montreal, Canada: Fullerenes: Chemistry, Physics, and New Directions IX 4 (The Electrochemical Society, Pennington) (1997)

    Google Scholar 

  40. M.I. Heggie, M. Terrones, B.R. Eggen, G. Jungnickel, R. Jones, C.D. Latham, P.R. Briddon, H. Terrones, Phys. Rev. B 57, 13339 (1998)

    Article  ADS  Google Scholar 

  41. H. Dodziuk, G. Dolgonos, and O. Lukin, Chem. Phys. Lett. 329, 351 (2000)

    Article  ADS  Google Scholar 

  42. E. Glukhova, A.I. Zhbanov, A.G. Rezkov, Phys. Solid State 47, 390 (2005).

    Article  ADS  Google Scholar 

  43. D. Baowan, N. Thamwattana, J.M. Hill, Eur. Phys. J. D 44, 117 (2007)

    Article  ADS  Google Scholar 

  44. A. N. Enyashin and A. L. Ivanovskii, Phys. Solid State 49, 392 (2007)

    Article  ADS  Google Scholar 

  45. M. Pudlak, R. Pincak, Phys. Rev. A 79, 033202 (2009)

    Article  ADS  Google Scholar 

  46. O.P. Charkin, Russ. J. Inorg. Chem. 58, 46 (2013)

    Google Scholar 

  47. M. Kaur, R.S. Sawhney, D. Engles, 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET) (IEEE, Chennai, 2013); pp. 426–430.

  48. K. Stokbro, J. Phys. Cond. Matter 20, 064216 (2008)

    Article  ADS  Google Scholar 

  49. Atomistix Tool Kit Manual Version 13.8.0 (Copyright QuantumWise 2008–2016)

  50. M. Strange, S. Kristensen, K.S. Thygesen, K.W. Jacobsen, J. Chem. Phys. 128, 114714 (2008)

    Article  ADS  Google Scholar 

  51. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  52. W.H. Green, S.M. Jr, Gorun, G. Fitzgerald, P.W. Fowler, A. Ceulemans, B.C. Titeca, J. Phys. Chem. 100, 14892 (1996)

    Article  Google Scholar 

  53. M.D. Diener, J.M. Alford, Nature 393, 668 (1998)

    Article  ADS  Google Scholar 

  54. T. Oku, N. Kakuta, A. Kawashima, K. Nomura, R. Motoyoshi, A. Suzuki, K. Kikuchi G. Kinoshita, Mat. Trans. 49, 2457 (2008).

    Article  Google Scholar 

  55. X.J. Zhang, M.Q. Long, K.Q. Chen, Z. Shuai, Q. Wan, B.S. Zou, Y. Zhang, Appl. Phys. Lett. 94, 073503 (2009)

    Article  ADS  Google Scholar 

  56. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park, Nature 417, 725 (2002)

    Article  ADS  Google Scholar 

  57. M. Kiguchi, K. Murakosh, J. Phys. Chem. Lett. 112, 8140 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milanpreet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Sawhney, R.S. & Engles, D. Linear response formulism of a carbon nano-onion stringed to gold electrodes. Appl. Phys. A 123, 292 (2017). https://doi.org/10.1007/s00339-017-0906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0906-5

Keywords

Navigation