Skip to main content
Log in

Investigation of interface property in Al/SiO2/n-SiC structure with thin gate oxide by illumination

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The reverse tunneling current of Al/SiO2/n-SiC structure employing thin gate oxide is introduced to examine the interface property by illumination. The gate current at negative bias decreases under blue LED illumination, yet increases under UV lamp illumination. Light-induced electrons captured by interface states may be emitted after the light sources are off, leading to the recovery of gate currents. Based on transient characteristics of gate current, the extracted trap level is close to the light energy for blue LED, indicating that electron capture induced by lighting may result in the reduction of gate current. Furthermore, bidirectional CV measurements exhibit a positive voltage shift caused by electron trapping under blue LED illumination, while a negative voltage shift is observed under UV lamp illumination. Distinct trapping and detrapping behaviors can be observed from variations in IV and CV curves utilizing different light sources for 4H-SiC MOS capacitors with thin insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.I. Harris, V.V. Afanas’ev, Microelectron. Eng 36, 167 (1997)

    Article  Google Scholar 

  2. I. Vickridge, J. Ganem, Y. Hoshino, I. Trimaille, J. Phys. D: Appl. Phys 40, 6254 (2007)

    Article  ADS  Google Scholar 

  3. R.H. Kikuchi, K. Kita, Appl. Phys. Lett. 104, 052106 (2014)

    Article  ADS  Google Scholar 

  4. E. Arnold, D. Alok, IEEE Trans. Electron Device 48, 1870 (2001)

    Article  ADS  Google Scholar 

  5. H. Yoshioka, J. Senzaki, A. Shimozato, Y. Tanaka, H. Okumura, Appl. Phys. Lett. 104, 083516 (2014)

    Article  ADS  Google Scholar 

  6. G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, J.W. Palmour, IEEE Electron Device Lett. 22, 176 (2001)

    Article  ADS  Google Scholar 

  7. Y. Nanen, M. Kato, J. Suda, T. Kimoto, IEEE Trans. Electron Device 60, 1260 (2013)

    Article  ADS  Google Scholar 

  8. D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, IEEE Electron Device Lett. 31, 710 (2010)

    Article  ADS  Google Scholar 

  9. P. Fiorenza, F. Giannazzo, M. Vivona, A.L. Magna, F. Roccaforte, Appl. Phys. Lett. 103, 153508 (2013)

    Article  ADS  Google Scholar 

  10. A. Poggi, F. Moscatelli, Y. Hijikata, S. Solmi, R. Nipoti, Microelectron. Eng. 84, 2804 (2007)

    Article  Google Scholar 

  11. R. Esteve, A. Schöner, S.A. Reshanov, C.M. Zetterling, H. Nagasawa, J. Appl. Phys. 106, 044514 (2009)

    Article  ADS  Google Scholar 

  12. F. Allerstam, H.Ö. Ólafsson, G. Gudjónsson, D. Dochev, E.Ö. Sveinbjörnsson, T. Rödle, R. Jos, J. Appl. Phys 101, 124502 (2007)

    Article  ADS  Google Scholar 

  13. G. Gudjónsson, H.Ö. Ólafsson, F. Allerstam, P.-Å. Nilsson, E.Ö. Sveinbjörnsson, H. Zirath, T. Rödle, R. Jos, IEEE Electron Device Lett. 26, 96 (2005)

    Article  ADS  Google Scholar 

  14. K. Ueno, T. Oikawa, IEEE Electron Device Lett. 20, 624 (1999)

    Article  ADS  Google Scholar 

  15. A. Modic, G. Liu, A. C. Ahyi, Y. Zhou, P. Xu, M.C. Hamilton, J.R. Williams, L.C. Feldman, S. Dhar, IEEE Electron Device Lett. 35, 894 (2014)

    Article  ADS  Google Scholar 

  16. Y. Mikamura, K. Hiratsuka, T. Tsuno, H. Michikoshi, S. Tanaka, T. Masuda, K. Wada, T. Horii, J. Genba, T. Hiyoshi, T. Sekiguchi, IEEE Trans. Electron Devices 62, 382 (2015)

    Article  ADS  Google Scholar 

  17. J. Wu, J. Hu, J. H. Zhao, X. Wang, X. Li, L. Fursin, T. Burke, Solid-State Electron. 52, 909 (2008)

    Article  ADS  Google Scholar 

  18. J.M. Knaup, P. Deák, T. Frauenheim, Phys. Rev. B 71, 235321 (2005)

    Article  ADS  Google Scholar 

  19. F. Devynck, A. Alkauskas, P. Broqvist, A. Pasquarello, Phys. Rev. B 83, 195319 (2011)

    Article  ADS  Google Scholar 

  20. P. Deák, J.M. Knaup, T. Hornos, C. Thill, A. Gali, T. Frauenheim, J. Phys. D: Appl. Phys 40, 6242 (2007)

    Article  ADS  Google Scholar 

  21. H. Kurimoto, K. Shibata, C. Kimura, H. Aoki, T. Sugino, Appl. Surf. Sci 253, 2416 (2006)

    Article  ADS  Google Scholar 

  22. J.R. Laroche, J. Kim, J.W. Johnson, B. Luo, B.S. Kang, R. Mehandru, Y. Irokawa, S.J. Pearton, G. Chung, F. Ren, Electrochem. Solid-State Lett 7, G21 (2004)

    Article  Google Scholar 

  23. N. Yoshida, E. Waki, M. Arai, K. Yamasaki, J.H. Han, M. Takenaka, S. Takagi, Thin Solid Films 557, 237 (2014)

    Article  ADS  Google Scholar 

  24. A.V. Penumatcha, S. Swandono, J.A. Cooper, IEEE Trans. Electron Devices 60, 923 (2013)

    Article  ADS  Google Scholar 

  25. S. Ezhilvalavan, T.Y. Tseng, J. Am. Ceram. Soc. 82, 600 (1999)

    Article  Google Scholar 

  26. H. Matsuura, M. Takahashi, S. Nagata, K. Taniguchi, J. Mater. Sci. Mater. Electron 19, 810 (2008)

    Article  Google Scholar 

  27. X.D. Chen, S. Dhar, T.I. Smith, J.R. Williams, L.C. Feldman, P.M. Mooney, J. Appl. Phys 103, 033701 (2008)

    Article  ADS  Google Scholar 

  28. V.V. Afanas’ev, A. Stesmans, F. Ciobanu, G. Pensl, K.Y. Cheong, S. Dimitrijev, Appl. Phys. Lett. 82, 568 (2003)

    Article  ADS  Google Scholar 

  29. E. Pippel, J. Woltersdorf, H.Ö. Ólafsson, E.Ö. Sveinbjörnsson, J. Appl. Phys 97, 034302 (2005)

    Article  ADS  Google Scholar 

  30. P. Fiorenza, A. Frazzetto, A. Guarnera, M. Saggio, F. Roccaforte, Appl. Phys. Lett. 105, 142108 (2014)

    Article  ADS  Google Scholar 

  31. J.P. Xu, P.T. Lai, C.L. Chan, Y.C. Cheng, Appl. Phys. Lett. 76, 372 (2000)

    Article  ADS  Google Scholar 

  32. H. Yano, F. Katafuchi, T. Kimoto, H. Matsunami, IEEE Trans. Electron Devices 46, 504 (1999)

    Article  ADS  Google Scholar 

  33. R. Yeluri, X. Liu, B.L. Swenson, J. Lu, S. Keller, U.K. Mishra, J. Appl. Phys 114, 083718 (2013)

    Article  ADS  Google Scholar 

  34. J. Tan, M.K. Das, J.A. Cooper Jr., M.R. Melloch, Appl. Phys. Lett. 70, 2280 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Ministry of Science and Technology, ROC, under Contract No. NSC 102-2221-E-002-183-MY3, and National Taiwan University under Contract No. NTU-ERP-105R89081. The authors also want to thank Hestia Power Inc. for providing the 4H-SiC epitaxial wafer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Hwu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, P.K., Hwu, J.G. Investigation of interface property in Al/SiO2/n-SiC structure with thin gate oxide by illumination. Appl. Phys. A 123, 261 (2017). https://doi.org/10.1007/s00339-017-0897-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0897-2

Keywords

Navigation