Abstract
We have studied structural and magnetic properties of reduced graphene nanoribbons (GNRs) and cobalt (Co)-doped GNRs. The effect of Co was also investigated on the magnetic properties of pristine GNRs, which play vital role in contribution of calculated magnetic moment. Herein, we have synthesized the pristine GNRs and Co-doped GNRs via a simple chemical refluxing process. The analysis of synthesised materials were carried out using different techniques such as Field emission scanning electron microscopy (FESEM) with EDAX analysis and X-ray diffraction pattern were confirmed the doping of Co into the GNRs. Moreover, from morphological analysis (FESEM), impurity or dopant (Co) shows as adsorbed at the surface of GNRs. Raman analysis has proved that the incorporation of Co into graphitic structure creates more defective sites. The results obtained from VSM analysis is clearly revealed that enhanced saturation magnetization (Ms) from ~13.08 × 10−2 emu/g to ~37.35 × 10−2 emu/g, due to the presence of unbalanced electron spins in Co which may be responsible for higher saturation magnetization in case of Co-doped GNRs as comparison of pristine GNRs. The obtained interesting magnetic properties of Co-doped GNRs create much attention towards various applications including spintronics devices and some related fields.
This is a preview of subscription content, access via your institution.






References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)
C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)
N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. Van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007)
L. Jiao, L. Xie, H. Dai, Densely Aligned Graphene Nanoribbons at ~35 nm Pitch. Nano Res. 5, 292–296 (2012)
X. Liang and S. Wi, Transport, Characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons. ACS Nano 6, 9700–9710 (2012)
A.N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, C. Zhou, Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. ACS Nano 8, 1538–1546 (2014)
X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)
H. Ago, Y. Ito, M. Tsuji, K. Ikeda, Step-templated CVD growth of aligned graphene nanoribbons supported by a single-layer graphene film. Nanoscale 4, 5178–5182 (2012)
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)
P.O. Lehtinen, A.S. Foster, A. Ayuela, A. Krasheninnikov, K. Nordlund, R.M. Nieminen, Magnetic properties and diffusion of adatoms on a graphene sheet. Phys. Rev. Lett. 91, 017202–017204 (2003)
H. Terrones, R. Lv, M. Terrones, M.S. Dresselhaus, The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 75, 0625010–0625040 (2012)
C.N.R. Rao, H.S.S. Ramakrishna Matte, K.S. Subrahmanyamand U. Maitra, Unusual magnetic properties of graphene and related materials. Chem. Sci. 3, 45–52 (2012)
M.A.H. Vozmediano, M.P. Lopez-Sancho, T. Stauber, F. Guinea, Local defects and ferromagnetism in graphene layers. Phys. Rev. B Condens. Matter 72, 155121 (2005)
D. Soriano, F. Munõz-Rojas, J. Fernańdez-Rossier, J.J. Palacios, Hydrogenated graphene nanoribbons for spintronics. Phys. Rev. B 81, 165409 (2010)
J. Zhou, Q. Wang, Q. Sun, X.S. Chen, Y. Kawazoe, P. Jena, Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 9, 3867–3870 (2009)
H. Feldner, Z.Y. Meng, T.C. Lang, F.F. Assaad, S. Wessel, A. Honecker, Dynamical signatures of edge-state magnetism on graphene nanoribbons. Phys. Rev. Lett. 106, 226401 (2008)
T. Eelbo, M. Waśniowska, M. Gyamfi, S. Forti, U. Starke, R. Wiesendanger, Influence of the degree of decoupling of graphene on the properties of transition metal adatoms. Phys. Rev. B 87, 205443–205444 (2013)
A.W. Robertson, B. Montanari, K. Heetal, Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 13, 1468–1475 (2013)
V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, P. Pyykkö, R.M. Nieminen, Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009)
E.J.G. Santos, D. Sánchez-Portal, A. Ayuela, Magnetism of substitutional Co impurities in graphene: realization of single π vacancies. Phys. Rev. B 81, 125433 (2010)
S. Lisenkov, A.N. Andriotis, M. Menon, Magnetic anisotropy and engineering of magnetic behavior of the edges in Co embedded graphene nanoribbons. Phys. Rev. Lett. 108, 187208 (2012)
H. Sevinçli, M. Topsakal, E. Durgun, S. Ciraci, Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys. Rev. B77, 195434 (2008)
V.A. Rigo, T.B. Martins, A.J.R. Da Silva, A. Fazzio, R.H. Miwa, Electronic, structural, and transport properties of Ni doped graphene nanoribbons. Phys. Rev. B79, 075435 (2009)
P.K. Sahoo, BPanigrahy, D Li andD. Bahadur, Magnetic behavior of reduced graphene oxide/metal nanocomposites. J. Appl. Phys. 113, 17B525 (2013)
Y. Zhao, S. Chen, B. Sun, D. Su, X. Huang, H. Liu, Y. Yan, K. Sun, G. Wang, Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Sci. Rep. 5, 7629 (2015)
M. Khandelwal, A. Kumar, One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. J. Mater. Chem. A 3, 22975 (2015)
S. Park, S.J. Park, S. Kim, Preparation and capacitance behaviours of cobalt oxide/graphene composites. Carbon Lett. 13, 130–132 (2012)
G. Socrates, Infrared Characteristic Group Frequencies, 3rd edn. (Wiley, New Jersey, 2003)
W. Tang, C.B. Wang, S.H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 473, 68–73 (2008)
F. Graf, K. Molitor, C. Ensslin, A. Stampfer, Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman Spectroscopy of single- and few-layer Graphene. Nano Lett. 7, 238–242 (2007)
A.C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman Spectrum of graphene and graphene layers, spatially resolved Raman spectroscopy of single- and few-layer graphene. Phys. Rev. Lett. 97, 187401 (2006)
Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Room temperature ferromagnetism of graphene. Nano Lett. 9, 220–224 (2009)
V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method, J. Phys. Chem. C 118, 9715–9725 (2014)
F. Donati, L. Gragnaniello, A. Cavallin, F.D. Natterer, Q. Dubout, M. Pivetta, F. Patthey, J. Dreiser, C. Piamonteze, S. Rusponi, H. Brune, Tailoring the magnetism of Co atoms on graphene through substrate hybridization. Phys. Rev. Lett. 113, 177201 (2014)
M. Cao, J.Jiang Wu,, H.-P. Cheng, Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures. Phys. Rev. B 81, 205424 (2010)
N.A.M. Barakat, B. Kim, S.J. Park, Y. Jo, M.-H. Junge, H.Y. Kim, Cobalt nanofibers encapsulated in a graphite shell by an electrospinning process. J. Mater. Chem. 19, 7371–7378 (2009)
H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlögl, W. Yang, X.X. Zhang, Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141–144 (2012)
S. Zhidkov, N.A. Skorikov, A.V. Korolev, A.I. Kukharenko, E.Z. Kurmaev, V.E. Fedorov, S.O. Cholakh, Electronic structure and magnetic properties of graphene/Co composite. Carbon 91, 298–303 (2015)
B. Pal, P.K. Giri, Room temperature ferromagnetism in Co-doped ZnO nanoparticles: milling time dependence and annealing effect. Int. J. Nanosci 10, 1–5 (2011)
Z. Li, W. Xie, X. Liu, Y. Wu, Magnetic, property and possible half-metal behavior in Co-doped graphene. J. Appl. Phys 117, 084311 (2015)
Acknowledgements
The authors are greatly thankful to Indian Institute of Technology (IIT), Roorkee, India, for providing the research facilities and University Grants Commission of India (UGC India) for funding the research.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kaur, N., Pal, K. Enhanced magnetic properties of cobalt-doped graphene nanoribbons. Appl. Phys. A 123, 259 (2017). https://doi.org/10.1007/s00339-017-0893-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-017-0893-6