Skip to main content
Log in

Enhanced magnetic properties of cobalt-doped graphene nanoribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have studied structural and magnetic properties of reduced graphene nanoribbons (GNRs) and cobalt (Co)-doped GNRs. The effect of Co was also investigated on the magnetic properties of pristine GNRs, which play vital role in contribution of calculated magnetic moment. Herein, we have synthesized the pristine GNRs and Co-doped GNRs via a simple chemical refluxing process. The analysis of synthesised materials were carried out using different techniques such as Field emission scanning electron microscopy (FESEM) with EDAX analysis and X-ray diffraction pattern were confirmed the doping of Co into the GNRs. Moreover, from morphological analysis (FESEM), impurity or dopant (Co) shows as adsorbed at the surface of GNRs. Raman analysis has proved that the incorporation of Co into graphitic structure creates more defective sites. The results obtained from VSM analysis is clearly revealed that enhanced saturation magnetization (Ms) from ~13.08 × 10−2 emu/g to ~37.35 × 10−2 emu/g, due to the presence of unbalanced electron spins in Co which may be responsible for higher saturation magnetization in case of Co-doped GNRs as comparison of pristine GNRs. The obtained interesting magnetic properties of Co-doped GNRs create much attention towards various applications including spintronics devices and some related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  3. C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  4. N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. Van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007)

    Article  ADS  Google Scholar 

  5. L. Jiao, L. Xie, H. Dai, Densely Aligned Graphene Nanoribbons at ~35 nm Pitch. Nano Res. 5, 292–296 (2012)

    Article  Google Scholar 

  6. X. Liang and S. Wi, Transport, Characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons. ACS Nano 6, 9700–9710 (2012)

    Article  Google Scholar 

  7. A.N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, C. Zhou, Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. ACS Nano 8, 1538–1546 (2014)

    Article  Google Scholar 

  8. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)

    Article  ADS  Google Scholar 

  9. H. Ago, Y. Ito, M. Tsuji, K. Ikeda, Step-templated CVD growth of aligned graphene nanoribbons supported by a single-layer graphene film. Nanoscale 4, 5178–5182 (2012)

    Article  ADS  Google Scholar 

  10. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)

    Article  ADS  Google Scholar 

  11. P.O. Lehtinen, A.S. Foster, A. Ayuela, A. Krasheninnikov, K. Nordlund, R.M. Nieminen, Magnetic properties and diffusion of adatoms on a graphene sheet. Phys. Rev. Lett. 91, 017202–017204 (2003)

    Article  ADS  Google Scholar 

  12. H. Terrones, R. Lv, M. Terrones, M.S. Dresselhaus, The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 75, 0625010–0625040 (2012)

    Article  Google Scholar 

  13. C.N.R. Rao, H.S.S. Ramakrishna Matte, K.S. Subrahmanyamand U. Maitra, Unusual magnetic properties of graphene and related materials. Chem. Sci. 3, 45–52 (2012)

    Article  Google Scholar 

  14. M.A.H. Vozmediano, M.P. Lopez-Sancho, T. Stauber, F. Guinea, Local defects and ferromagnetism in graphene layers. Phys. Rev. B Condens. Matter 72, 155121 (2005)

    Article  ADS  Google Scholar 

  15. D. Soriano, F. Munõz-Rojas, J. Fernańdez-Rossier, J.J. Palacios, Hydrogenated graphene nanoribbons for spintronics. Phys. Rev. B 81, 165409 (2010)

    Article  ADS  Google Scholar 

  16. J. Zhou, Q. Wang, Q. Sun, X.S. Chen, Y. Kawazoe, P. Jena, Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 9, 3867–3870 (2009)

    Article  ADS  Google Scholar 

  17. H. Feldner, Z.Y. Meng, T.C. Lang, F.F. Assaad, S. Wessel, A. Honecker, Dynamical signatures of edge-state magnetism on graphene nanoribbons. Phys. Rev. Lett. 106, 226401 (2008)

    Article  ADS  Google Scholar 

  18. T. Eelbo, M. Waśniowska, M. Gyamfi, S. Forti, U. Starke, R. Wiesendanger, Influence of the degree of decoupling of graphene on the properties of transition metal adatoms. Phys. Rev. B 87, 205443–205444 (2013)

    Article  ADS  Google Scholar 

  19. A.W. Robertson, B. Montanari, K. Heetal, Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 13, 1468–1475 (2013)

    Article  ADS  Google Scholar 

  20. V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, P. Pyykkö, R.M. Nieminen, Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009)

    Article  ADS  Google Scholar 

  21. E.J.G. Santos, D. Sánchez-Portal, A. Ayuela, Magnetism of substitutional Co impurities in graphene: realization of single π vacancies. Phys. Rev. B 81, 125433 (2010)

    Article  ADS  Google Scholar 

  22. S. Lisenkov, A.N. Andriotis, M. Menon, Magnetic anisotropy and engineering of magnetic behavior of the edges in Co embedded graphene nanoribbons. Phys. Rev. Lett. 108, 187208 (2012)

    Article  ADS  Google Scholar 

  23. H. Sevinçli, M. Topsakal, E. Durgun, S. Ciraci, Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys. Rev. B77, 195434 (2008)

    Article  ADS  Google Scholar 

  24. V.A. Rigo, T.B. Martins, A.J.R. Da Silva, A. Fazzio, R.H. Miwa, Electronic, structural, and transport properties of Ni doped graphene nanoribbons. Phys. Rev. B79, 075435 (2009)

    Article  ADS  Google Scholar 

  25. P.K. Sahoo, BPanigrahy, D Li andD. Bahadur, Magnetic behavior of reduced graphene oxide/metal nanocomposites. J. Appl. Phys. 113, 17B525 (2013)

    Article  Google Scholar 

  26. Y. Zhao, S. Chen, B. Sun, D. Su, X. Huang, H. Liu, Y. Yan, K. Sun, G. Wang, Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Sci. Rep. 5, 7629 (2015)

    Article  ADS  Google Scholar 

  27. M. Khandelwal, A. Kumar, One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. J. Mater. Chem. A 3, 22975 (2015)

    Article  Google Scholar 

  28. S. Park, S.J. Park, S. Kim, Preparation and capacitance behaviours of cobalt oxide/graphene composites. Carbon Lett. 13, 130–132 (2012)

    Article  Google Scholar 

  29. G. Socrates, Infrared Characteristic Group Frequencies, 3rd edn. (Wiley, New Jersey, 2003)

    Google Scholar 

  30. W. Tang, C.B. Wang, S.H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 473, 68–73 (2008)

    Article  Google Scholar 

  31. F. Graf, K. Molitor, C. Ensslin, A. Stampfer, Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman Spectroscopy of single- and few-layer Graphene. Nano Lett. 7, 238–242 (2007)

    Article  ADS  Google Scholar 

  32. A.C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman Spectrum of graphene and graphene layers, spatially resolved Raman spectroscopy of single- and few-layer graphene. Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  33. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Room temperature ferromagnetism of graphene. Nano Lett. 9, 220–224 (2009)

    Article  ADS  Google Scholar 

  34. V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method, J. Phys. Chem. C 118, 9715–9725 (2014)

    Article  Google Scholar 

  35. F. Donati, L. Gragnaniello, A. Cavallin, F.D. Natterer, Q. Dubout, M. Pivetta, F. Patthey, J. Dreiser, C. Piamonteze, S. Rusponi, H. Brune, Tailoring the magnetism of Co atoms on graphene through substrate hybridization. Phys. Rev. Lett. 113, 177201 (2014)

    Article  ADS  Google Scholar 

  36. M. Cao, J.Jiang Wu,, H.-P. Cheng, Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures. Phys. Rev. B 81, 205424 (2010)

    Article  ADS  Google Scholar 

  37. N.A.M. Barakat, B. Kim, S.J. Park, Y. Jo, M.-H. Junge, H.Y. Kim, Cobalt nanofibers encapsulated in a graphite shell by an electrospinning process. J. Mater. Chem. 19, 7371–7378 (2009)

    Article  Google Scholar 

  38. H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlögl, W. Yang, X.X. Zhang, Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141–144 (2012)

    Article  ADS  Google Scholar 

  39. S. Zhidkov, N.A. Skorikov, A.V. Korolev, A.I. Kukharenko, E.Z. Kurmaev, V.E. Fedorov, S.O. Cholakh, Electronic structure and magnetic properties of graphene/Co composite. Carbon 91, 298–303 (2015)

    Article  Google Scholar 

  40. B. Pal, P.K. Giri, Room temperature ferromagnetism in Co-doped ZnO nanoparticles: milling time dependence and annealing effect. Int. J. Nanosci 10, 1–5 (2011)

    Article  Google Scholar 

  41. Z. Li, W. Xie, X. Liu, Y. Wu, Magnetic, property and possible half-metal behavior in Co-doped graphene. J. Appl. Phys 117, 084311 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to Indian Institute of Technology (IIT), Roorkee, India, for providing the research facilities and University Grants Commission of India (UGC India) for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Pal, K. Enhanced magnetic properties of cobalt-doped graphene nanoribbons. Appl. Phys. A 123, 259 (2017). https://doi.org/10.1007/s00339-017-0893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0893-6

Keywords

Navigation