Applied Physics A

, 123:250 | Cite as

Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties

  • K. Niranjan
  • Subhajit Dutta
  • Soney Varghese
  • Ajoy Kumar Ray
  • Harish C. Barshilia
Article
  • 239 Downloads

Abstract

We report the growth of flower-like ferromagnetic Cu-doped ZnO (CZO) nanostructures using electrochemical deposition on FTO-coated glass substrates. X-ray photoelectron spectroscopy studies affirmed the presence of Cu in ZnO with an oxidation state of 2+. In order to find the optimized dopant concentration, different Cu dopant concentrations of 0.28, 0.30, 0.32, 0.35, 0.38, and 0.40 mM are applied and their magnetic, optical, and electrical properties are studied. Magnetic moment increased with the increasing dopant concentration up to 0.35 mM and then decreased with further increase in the concentration. Diamagnetic pure ZnO showed ferromagnetic nature even with a low doping concentration of 0.28 mM. Band gap increased with the increasing Cu concentration until a value of 0.35 mM and then remained the same for the higher dopant concentrations. It is ascribed to the Burstein–Moss effect. Defect-related broad photoluminescence (PL) peak is observed for the pure ZnO in the visible range. In contrast, Cu-doped samples showed a sharp and intense PL peak at 426 nm due to increased Zn interstitials. Kelvin probe measurements revealed that the Fermi level shifts toward the conduction band for the Cu-doped samples with respect to pure material. Electron transport mechanism in the samples is observed to be dominated by space charge-limited current and Schottky behavior with improved ideality factor up to 0.38 mM Cu.

Keywords

Cu-doped ZnO Nano-flowers Room-temperature ferromagnetism Defects 

Notes

Acknowledgements

The authors thank Mr. Siju, Mr. G. Srinivas, Mr. Praveen Kumar V, Mr.Benjamin Hudson Baby, Dr. Prasanth Chowdhury, and Dr. P. Bera of SED/NAL, Bangalore, for the FESEM, UV–VIS, 3D Profilometer, PL, VSM, and XPS. We thank Mr. Prabhanjan D Kulkarni, Dr. Arvind Kumar, and Dr. Venkataramana Bonu for the valuable discussions.

References

  1. 1.
    H. Ohno, Science 281, 951–956 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    T. Yu-Feng, H. Su-Jun, Y. Shi-shen, M. Liang-Mo, Chin. Phys. B 22, 088505 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    P. Dutta, M.S. Seehra, Y. Zhang, I. Wender, J. Appl. Phys 103, 07D104 (2008)CrossRefGoogle Scholar
  4. 4.
    K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988–990 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    G.L. Liu, Q. Cao, J.X. Deng, P.F. Xing, Y.X. Chen, S.S. Yan, L.M. Mei, Appl. Phys. Lett. 90, 052504 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    T.C. Droubay, D.J. Keavney, T.C. Kaspar, S.M. Heald, C.M. Wang, C.A. John-son, K.M. Whitaker, D.R. Gamelin, S.A. Chambers, Phys. Rev. B 79, 217206 (2009)Google Scholar
  7. 7.
    X.X. Wei, C. Song, W.K. Geng, B. He, F. Pan, J. Phys. 18, 7471–7479 (2006)Google Scholar
  8. 8.
    D.B. Buchholz, R.P.H. Chang, J.H. Song, J.B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    G.Z. Xing, J.B. Ji, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, J.S. Wang, T.C. Sum, A.H.C. Huan, T. Wu, Adv. Mater. 20, 3521–3527 (2008)CrossRefGoogle Scholar
  10. 10.
    J.M.D. Coey, M. Venkatesan, B.C. Fitzgerald, Nat. Mater. 4, 173–179 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    V. Bonu, A. Das, M. Sardar, S. Dhara, K.A. Tyagi, J. Mater. Chem. C 3, 1261–1267 (2015)CrossRefGoogle Scholar
  12. 12.
    G.P. Dransfield, Radiat. Prot. Dosim. 91, 271 (2000)CrossRefGoogle Scholar
  13. 13.
    D.R. Clarke, J. Am. Ceram. Soc. 82, 485–502 (1999)CrossRefGoogle Scholar
  14. 14.
    J.F. Wager, Science 300, 1245–1246 (2003)CrossRefGoogle Scholar
  15. 15.
    T. Dietl, H. Ohno, MRS Bull. 28, 714–719 (2003)CrossRefGoogle Scholar
  16. 16.
    L.S. Mende, J. L. MacManus-Driscoll, Mater. Today 10, 40–48 (2007)CrossRefGoogle Scholar
  17. 17.
    A.B. Djurisic, Y.H. Leung, Small 2, 944–961 (2006)CrossRefGoogle Scholar
  18. 18.
    O. Lupan, T. Pauporté, L.T. Bahers, B. Viana, I. Ciofini, Adv. Funct. Mater. 21, 3564–3572 (2011)CrossRefGoogle Scholar
  19. 19.
    T. Dietl, H. Ohno, Rev. Mod. Phys. 86, 187–251 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    M.H. Kane, K. Shalini, C.J. Summers, R. Varatharajan, J. Nause, C.R. Vestal, Z.J. Zhang, I.T. Fergusona, J. Appl. Phys. 97, 023906 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    K. Sato, H. Katayama-Yoshida, P.H. Dederichs, Jpn. J. Appl. Phys. 44, L948–L951 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, J. Appl. Phys. 92, 6066–6071 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    M. Tay, Y. Wua, G.C. Han, T.C. Chong, Y.K. Zheng, S.J. Wang, Y. Chen, X. Pan, J. Appl. Phys. 100, 063910 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Q. Ma, D.B. Buchholz, R.P.H. Chang, Phys. Rev. B 78, 214429 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    L.M. Huaung, A.L. Rosa, R. Ahuja, Phys. Rev. B 74, 075206 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    M Younas, J Shen, M He, R Lortz, F Azad, M.J. Akthar, A. Maqsood, F.C.C. Ling, RSC Adv. 5, 55648–55657 (2015)CrossRefGoogle Scholar
  27. 27.
    K. Sato, H. Katayama-Yoshida, J. Appl. Phys. 39, L555–L558 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    X.-L. Li, X.-H. Xu, Z.-Y. Quan, F.J. Guo, H.-S. Wu, G.A. Gehring, J. Appl. Phys. 105, 103914 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    T.S. Herng, S.P. Lau, S.F. Yu, J.S. Chen, K.S. Teng, J. Magn. Magn. Mater. 315, 107–110 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    D.L. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, G.D. Tang, Appl. Phys. Lett. 90, 142502 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    O. Lupan, T. Papuporté, B. Viana, P. Aschehoug, Electrochim. Acta 56, 10543–10549 (2011)CrossRefGoogle Scholar
  32. 32.
    O. Lupan, T. Papuporté, B. Viana, Adv. Mater. 22, 3298–3302 (2010)CrossRefGoogle Scholar
  33. 33.
    V.A. Karpina, V.I. Lazorenko, C.V. Lakshakrev, V.D. Dobrowolski, L.I. Kopylova, V.A. Baturin, S.A.A. Pustovoytov, Ju Karpenko, S.A. Eremin, P.M. Lytvyn, V.P. Ovsyannikov, E.A. Mazurenko, Cryst. Res. Technol. 39, 980–992 (2004)CrossRefGoogle Scholar
  34. 34.
    M. Law, L.E.G. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455–459 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    A. Simimol, A.A. Anappara, S. Greulich-Weber, P. Chowdhury, H.C. Barshilia, J. Appl. Phys. 117, 214310 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    E. Matei, I. Enculescu, V. Vasilache, C.M. Teodorescu, Phys. Status Solidi A 207, 2517–2522 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Nanotechnology 15, 622–626 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    D. Gao, G. Yang, J. Li, J. Zhang, D. Xue, J. Phys. Chem. C 114, 18347 (2010)CrossRefGoogle Scholar
  39. 39.
    O. Lupan, L. Chow, L.K. Ono, B. RoldanCuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, J. Phys. Chem. C 114, 12401–12408 (2010)CrossRefGoogle Scholar
  40. 40.
    B.E. Goodby, J.E. Pemborton, Appl. Spectrosc. 42, 754 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    L. Chow, O. Lupan, G. Chai, H. Khallaf, L. K. Ono, B. RoldanCuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte, Sensors Actuators A 189, 399–408 (2013)CrossRefGoogle Scholar
  42. 42.
    T Matsuhisa, in Catalysis, A Specialist Periodical Report, vol. 12, Chap. 1, ed. by J.J. Spivey (The Royal Society of Chemistry, Cambridge, 1996)Google Scholar
  43. 43.
    B. Yang, P. Feng, A. Kumar, R.S. Katiyar, M. Achermann, J. Phys. D 42, 195402 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    C.H. Xia, C.G. Hu, C.H. Hu, Z. Ping, F. Wang, Bull. Mater. Sci. 34, 1083–1087 (2011)CrossRefGoogle Scholar
  45. 45.
    N. Tahir, A. Karim, K.A. Persson, S.T. Hussain, A.G. Cruz, M. Usman, M. Naeem, R. Qiao, W. Yang, Y.D. Chuang, Z. Hussain, J. Phys. Chem. C 117, 8968 (2013)CrossRefGoogle Scholar
  46. 46.
    X. Wang, R. Zehng, Z. Liu, H. Ho, J. Xu, S.P. Ringer, Nanotechnology 19, 455702 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    J.J. Beltran, C.A. Barrero, A. Punnoose, J. Phys. Chem. C 120, 8969–8978 (2008)CrossRefGoogle Scholar
  48. 48.
    U.P.S. Gahlaut, V. Kumar, R.K. Pandey, Y. C. Goswani, Optik Int. J. Light Electron Optics, 127, 4292–4295 (2016)CrossRefGoogle Scholar
  49. 49.
    R. Sangeetha, S. Muthukumaran, M. Ashokkumar, J Mater Sci. 26, 8108–8117 (2015)Google Scholar
  50. 50.
    T.S. Herg, D.C. Qi, T. Berlijin, J.B. Yi, K.S. Yang, Y. Dai, Y.P. Feng, I. Santoso, C. Sánchez-Hanke, X.Y. Gao, A.T.S. Wee, W. Ku, J. Ding, A. Rusydi, Phys. Rev. Lett. 105, 207201 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    K Joshi, M Rawat, S.K. Gautam, R.G. Singh, R.C. Ramo, J. Alloys. Compd. 680, 252–258 (2016)CrossRefGoogle Scholar
  52. 52.
    A.. A Ghosh, N. Kumari, A. Bhattacharjee, J. Nanosci. Nanotechnol. 2, 485–489 (2014)Google Scholar
  53. 53.
    M. Bedir, M. Oztas, A.N. Yazici, E.V. Kafadar, Chin. Phys. Lett. 23, 939–942 (2006)CrossRefGoogle Scholar
  54. 54.
    M. Oztas, M. Bedir, Thin Solid Films 516, 1703–1709 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    K.J. Kim, Y.R. Parkn, Appl. Phys. Lett. 78, 475–479 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    H. Zhu, J. Iqbal, H. Xu, D. Yu, J. Chem. Phys. 129, 124713 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    F.H. Su, Y.F. Liu, W. Chen, W.J. Wang, K. Ding, G.H. Li, A.G. Joly, D.E. McCready, J. Appl. Phys 100, 013107 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    S. Kuriakose, B. Satpati, S. Mohapatra, Phys. Chem. Chem. Phys. 17, 25172–25181 (2015)CrossRefGoogle Scholar
  59. 59.
    N.S. Ramgir, P.K. Sharma, N. Datta, M. Kaur, A.K. Debnath, D.K. Aswal, S.K. Gupta, Sensors Actuators B 186, 718–726 (2013)CrossRefGoogle Scholar
  60. 60.
    S.H. Cheng, C.F. Yu, Y.S. Lin, W.J. Xie, T.W. Hsu, D.P. Tsai, J. Appl. Phys. 104, 114314 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    L.J. Brillson, Y. Lu, J. Appl. Phys. 109, 121301 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    J.D. Hwang, Y.L. Lin, C.T. Kung, Nanotechnology 24, 115709 (2013)ADSCrossRefGoogle Scholar
  63. 63.
    N. Datta, N.S. Ramgir, S. Kumar, P. Veerender, M. Kaur, S Kailasaganapathi, A.K. Debnath, D.K. Aswal, S.K. Gupta, Sensors Actuators B 202, 1270–1280 (2014)CrossRefGoogle Scholar
  64. 64.
    Z. Ahmad, H.M. Sayyad, Optoelectron. Adv. Mater. 3, 509–512 (2009)Google Scholar
  65. 65.
    R. Zamiri, B. Singh, M.S. Belsley, J.M.F. Ferreira, Ceram. Int. 40, 6031–6036 (2012)CrossRefGoogle Scholar
  66. 66.
    M. Ashokkumar, S. Muthukumaran, J. Lumin 162, 97–103 (2015)CrossRefGoogle Scholar
  67. 67.
    Y. Caglar, F. Yakuphanoglu, S. Ilican, M. Caglar, J. Optoelectron. Adv. Mater. 10, 2584–2587 (2008)Google Scholar
  68. 68.
    J. H. Werner, Appl. Phys. A 47, 291–300 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • K. Niranjan
    • 1
    • 2
  • Subhajit Dutta
    • 1
    • 3
  • Soney Varghese
    • 2
  • Ajoy Kumar Ray
    • 3
  • Harish C. Barshilia
    • 1
  1. 1.Nanomaterials Research Laboratory, Surface Engineering DivisionCSIR-National Aerospace LaboratoriesBangaloreIndia
  2. 2.School of Nano Science and TechnologyNational Institute of Technology CalicutCalicutIndia
  3. 3.Center for Material Science and NanotechnologySikkim Manipal Institute of TechnologyEast SikkimIndia

Personalised recommendations