Skip to main content
Log in

Thermal conductivity of polymer composite pigmented with titanium dioxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this work is to provide a numerical modeling of thermal conductivity of a polymer matrix polystyrene composite filled with titanium dioxide spheres, and to compare the obtained results with theoretical prediction models and the experimental data as a function of the quenching temperature. For this purpose, a numerical study was conducted using the finite element method to predict the effective thermal conductivity of the composite. In addition, a comparison with the results from the analytical models showed that the proposed numerical model is in good agreement with the analytical models of Hatta–Taya and Hashin–Shtrikman. Finally, the comparison of the numerical model to experimental results based on the quenching temperature shows that the best quenching temperature that agrees well with the theoretical model Hashin–Shtrikman is 20 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Surface (m2)

C p :

Specific heat (J/Kg K)

k m  =  k 1 :

Thermal conductivity of matrix (W/m K)

k f  = k 2 :

Thermal conductivity of filler (W/m K)

k eff :

Effective thermal conductivity (W/m K)

L :

Size of the square element (µm)

q 0 :

Heat flux density through the contact (W m−2)

r :

Radius of filler (µm)

R c :

Dimensionless contact resistance

\({r_c}\) :

Dimensional contact resistance (K m2 W−1)

S :

Surface of element (m2)

T :

Temperature (K)

T f :

Temperatures in the filler (K)

T m :

Temperatures in the matrix (K)

X, Y :

Horizontal and vertical axes

ρ :

Density (Kg/m3)

φ :

Filler fraction (%)

\(\phi\) :

Heat flux (W)

References

  1. F. Laurin, Introduction générale sur les matériaux composites (ONERA, The French Aerospace Lab., Aussois, 2011)

  2. J.M. Bethelot, Matériaux composites: comportement mécanique et analyse des structures, edn. (Masson, Paris, 1992)

    Google Scholar 

  3. Y. Xu, K. Yagi, Mater. Trans. 45(8), 2602 (2004)

    Article  Google Scholar 

  4. R.C. Progelhof, J.L. Throne, R.R. Ruetsch, Polym. Eng. Sci. 76(9), 615 (1976)

    Article  Google Scholar 

  5. A. Sutradhar, G.H. Paulino, Comput. Methods Appl. Mech. Eng. 193, 4511 (2004)

    Article  ADS  Google Scholar 

  6. C. Bonacina, G. Comini, Int. J. Heat Mass Transf. 16, 581 (1973)

    Article  Google Scholar 

  7. J.L. Auriault, Int. J. Heat Mass Transf. 26, 861 (1983)

    Article  ADS  Google Scholar 

  8. P.G. Klemens, Int. J. Thermophys. 11, 971 (1990)

    Article  ADS  Google Scholar 

  9. B. Agoudjil, L. Ibos, Y. Candau, J.C. Majesté, Y.P. Mamunya, Compos. A 39, 342 (2008)

    Article  Google Scholar 

  10. M. Shen, Y. Cui, J. He, Y. Zhang, Int. J. Miner. Metall. Mater. 18, 623 (2011)

    Article  Google Scholar 

  11. M. Chikhi, B. Agoudjil, A. Boudenne, A. Gherabli, J. Thermoplast. Compos. Mater. 26, 336 (2013)

    Article  Google Scholar 

  12. M. Haddadi, B. Agoudjil, A. Boudenne, B. Garnier, Int. J. Thermophys. 34, 101 (2013)

    Article  ADS  Google Scholar 

  13. H. Hatta, M. Taya, J. Appl. Phys. 58, 2478 (1985)

    Article  ADS  Google Scholar 

  14. Z. Hashin, S. Shtrikman, J. Appl. Phys. 33, 3125 (1962)

    Article  ADS  Google Scholar 

  15. B. Honnert, G. Mater, Health and safety at work, INRS Technical review ND 2367-229-12 (2012)

  16. N. Jadhav, V. Gelling, J. Coat. Technol. Res. 12(1), 137 (2015)

    Article  Google Scholar 

  17. T.P. Selvin, T. Sabu, S. Babdyopadhyay, Compos. A 40, 36 (2009)

    Article  Google Scholar 

  18. T.P. Selvin, J. Kuruvilla, T. Sabu, Mater. Lett. 58, 281 (2004)

    Article  Google Scholar 

  19. M. Karkri, COMSOL Conference, (Paris, 2010).

  20. N. Benmansour, Doctoral Thesis, University of Batna, 2015

  21. M. Chikhi, Doctoral Thesis, University of Batna, 2013

  22. A. Boudenne, L. Ibos, E. Gehin, Y. Candau, J. Phys. D 37, 132 (2004)

    Article  ADS  Google Scholar 

  23. A. Boudenne, L. Ibos, E. Gehin, Y. Candau, Meas. Sci. Technol. 17, 1870 (2006)

    Article  ADS  Google Scholar 

  24. F. Rouabah, D. Dadache, M. Fois, N. Haddaoui, J. Polym. Eng. 34, 657 (2014)

    Article  Google Scholar 

  25. V. Félix, Doctoral Thesis, University of Nancy, 2011

  26. N. Jouault, Doctoral Thesis, University of Bretagne-Sud, 2009

  27. J. Ramier, Doctoral Thesis, INSA Lyon, 2004

  28. A. Hamamoto, T. Tanaka, J. Vinyl Add. Technol. 6(1), 20 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ghebrid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghebrid, N., Guellal, M. & Rouabah, F. Thermal conductivity of polymer composite pigmented with titanium dioxide. Appl. Phys. A 123, 276 (2017). https://doi.org/10.1007/s00339-017-0889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0889-2

Keywords

Navigation