Applied Physics A

, 123:209 | Cite as

Generation of ultra-small InN nanocrystals by pulsed laser ablation of suspension in organic solution

  • Canan Kurşungöz
  • Elif Uzcengiz Şimşek
  • Refik Tuzaklı
  • Bülend Ortaç


Nanostructures of InN have been extensively investigated since nano-size provides a number of advantages allowing applications in nanoscale electronic and optoelectronic devices. It is quite important to obtain pure InN nanocrystals (InN-NCs) to reveal the characteristic features, which gain interest in the literature. Here, we proposed a new approach for the synthesis of ultra-small hexagonal InN-NCs by using suspension of micron-sized InN powder in ethanol with pulsed laser ablation method. The liquid environment, laser energy and ablation time were optimized and a post-synthesis treatment, centrifugation, was performed to achieve InN-NCs with the smallest size. Besides, the micron-sized InN powder suspension, as a starting material, enabled us to obtain InN-NCs having diameters smaller than 5 nm. We also presented a detailed characterization of InN-NCs and demonstrated that the formation mechanism mainly depends on the fragmentation due to laser irradiation of the suspension.


Laser Energy In2O3 Pulse Laser Ablation Ablation Time Nanoparticle Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partially supported by TÜBA-GEBİP. We thank Hüseyin Avni Vural for his assistance with RAMAN investigation. We would also like to show our gratitude to Dr. Tolga Bağcı for reading and making comments that improved the manuscript.


  1. 1.
    B. Monemar, J. Mater. Sci. Mater. Electron. 10, 227 (1999)CrossRefGoogle Scholar
  2. 2.
    A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys 94, 2779 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    I. Mahboob, T.D. Veal, C.F. McConville, H. Lu, W.J. Schaff, Phys. Rev. Lett. 92, 36804 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 88, 152113 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    X. Michalet, S.S. Gambhir, S. Weiss, Science 307, 538 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M.S. Hu, W.M. Wang, T.T. Chen, L.S. Hong, C.W. Chen, C.C. Chen, Y.F. Chen, K.H. Chen, L.C. Chen, Adv. Funct. Mater 16, 537 (2006)CrossRefGoogle Scholar
  7. 7.
    O. Briot, B. Maleyre, and S. Ruffenach. Appl. Phys. Lett. 83, 2919 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    N. Nepal, N.A. Mahadik, L.O. Nyakiti, S.B. Qadri, M.J. Mehl, J.K. Hite, C.R. Eddy, Cryst. Growth Des. 13, 1485 (2013)CrossRefGoogle Scholar
  9. 9.
    A.P. Lima, A. Tabata, J.R. Leite, S. Kaiser, D. Schikora, B. Schöttker, T. Frey, D.J. As, K. Lischka, J. Cryst. Growth 201, 396 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Hsieh, D.S. Yun, E. Hu, A.M. Belcher, J. Mater. Chem. 20, 1435 (2010)CrossRefGoogle Scholar
  11. 11.
    A. K. Mann, D. Varandani, B. R. A. J. Mehta, Bull. Mater. Sci. 31, 233 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Xiao, Y. Xie, R. Tang, W. Luo, Inorg. Chem. 42, 107 (2003)CrossRefGoogle Scholar
  13. 13.
    S. Hu, Y. Dong, J. Yang, J. Liu, S. Cao, J. Mater. Chem. 22, 1957 (2012)CrossRefGoogle Scholar
  14. 14.
    M.A. Qaeed, K. Ibrahim, K.M.A. Saron, A. Salhin, Sol. Energy 97, 614 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    P. Šimek, D. Sedmidubský, K. Klímová, Š. Huber, P. Brázda, M. Mikulics, O. Jankovský, Z. Sofer, J. Nanopart. Res. 16, 2805 (2014)CrossRefGoogle Scholar
  16. 16.
    K. Sardar, F.L. Deepak, A. Govindaraj, M.M. Seikh, C.N.R. Rao, Small 1, 91 (2005)CrossRefGoogle Scholar
  17. 17.
    C. Wu, T. Li, L. Lei, S. Hu, Y. Liu, Y. Xie, M. Eng. New J. Chem. 29, 1610 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Alkis, M. Alevli, S. Burzhuev, H.A. Vural, A.K. Okyay, B. Ortaç, J. Nanopart. Res. 14, 1048 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    T. Oztas, H.S. Sen, E. Durgun, B. Ortaç, J. Phys. Chem. C 118, 30120 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Lin, J. Yang, S.-H. Lu, K.-Y. Niu, Y. Liu, J. Sun, X.-W. Du, J. Mater. Chem 20, 1103 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Hu, Y. Guo, Y. Dong, J. Yang, J. Liu, S. Cao, J. Mater. Chem 22, 12053 (2012)CrossRefGoogle Scholar
  22. 22.
    B. Tekcan, S. Alkis, M. Alevli, N. Dietz, B. Ortac, N. Biyikli, A. K. Okyay, IEEE Electron Device Lett. 35, 936 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    N. El-Atab, F. Cimen, S. Alkis, B. Ortaç, M. Alevli, N. Dietz, A.K. Okyay, A. Nayfeh, Appl. Phys. Lett. 104, 253106 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    D. Kim, D. Jang, Appl. Surf. Sci 253, 8045 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    H. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mater 22, 1333 (2012)CrossRefGoogle Scholar
  26. 26.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)CrossRefGoogle Scholar
  27. 27.
    R. M. Tilaki, a. Iraji zad, and S. M. Mahdavi, Appl. Phys. A 84, 215 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    A. Hahn, J. Laser Micro/Nanoeng. 3, 73 (2008)CrossRefGoogle Scholar
  29. 29.
    A. Schwenke, P. Wagener, S. Nolte, S. Barcikowski, Appl. Phys. A Mater. Sci. Process 104, 77 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    H. Zhang, R.L. Penn, R.J. Hamers, J.F. Banfield, J. Phys. Chem. B 103, 4656 (1999)CrossRefGoogle Scholar
  31. 31.
    F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 9111 (2000)CrossRefGoogle Scholar
  32. 32.
    F. Mafuné, J. Kohno, Y. Takeda, J. Phys. Chem. B 105, 5114 (2001)CrossRefGoogle Scholar
  33. 33.
    M. Lei, K. Huang, R. Zhang, H.J. Yang, X.L. Fu, Y.G. Wang, W.H. Tang, J. Alloys Compd. 535, 50 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Materials Science and Nanotechnology Department, UNAM-National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
  2. 2.Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey

Personalised recommendations