Skip to main content
Log in

Tunable electromagnetically induced transparency in hybrid graphene/all-dielectric metamaterial

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We proposed a hybrid graphene/dielectric structure to achieve tunable electromagnetically induced transparency (EIT) effect. Unit cell of hybrid structure consists of a graphene strip as bright element and a dielectric split ring resonator (DSRR) as quasi-dark element. The destructive inference between dipolar plasmon resonance induced by graphene strip and Mie resonance induced by DSRR leads to famous EIT effect. By altering physical sizes of two resonant elements and their couplings, EIT resonance can be effectively controlled. In particular, EIT window and effective group index can be dynamically dominated by varying graphene strip’s Fermi level. This active manipulation is also confirmed using “two-particle” model. More interestingly, EIT resonance can be also effectively modulated through controlling incident angles for electromagnetic (EM) waves. These results would have promising applications in areas of tunable slow light devices and new filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, Phys. Rev. Lett. 101(25), 253903 (2008)

    Article  ADS  Google Scholar 

  2. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phy. Rev. Lett 101, 047401 (2008)

    Article  ADS  Google Scholar 

  3. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 102, 051901 (2009)

    Article  Google Scholar 

  4. L. Zhu, F.Y. Meng, J.H. Fu, Q. Wu, J. Hua, Opt. Express 20, 4494 (2012)

    Article  ADS  Google Scholar 

  5. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, Nano Lett. 10(4), 1103–1107 (2010)

    Article  ADS  Google Scholar 

  6. F.Y. Meng, J.H. Fu, K. Zhang, Q. Wu, J.-Y. Kim, J.J. Choi, B. Lee, J.-C. Lee, J. Phys. D: Appl. Phys 44(26), 265402 (2011)

    Article  ADS  Google Scholar 

  7. L. Zhu, F. Y. Meng, L. Dong, J. H. Fu, F. Zhang, and Q. Wu, Opt. Express 21(26), 32099–32110 (2013)

    Article  ADS  Google Scholar 

  8. H. Yang, S. Hu, D. Liu, H. Lin, B. Xiao, and J. Chen, Appl. Phys. A 122(2), 1–5 (2016)

    Article  ADS  Google Scholar 

  9. L. Zhu, F.Y. Meng, J.H. Fu, Q. Wu, J. Phys. D: Appl. Phys. 45, 445105 (2012)

    Article  ADS  Google Scholar 

  10. Z.G. Dong, H. Liu, M.X. Xu, T. Li, S.M. Wang, S.N. Zhu, X. Zhang, Opt. Express 18(17), 18229–18234 (2010)

    Article  ADS  Google Scholar 

  11. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, Phys. Rev. B 80(15), 153103 (2009)

    Article  ADS  Google Scholar 

  12. X. J. He, T. Y. Li, L. Wang, J. M. Wang, X. H. Tian, J. X. Jiang and Z.X. Geng, Appl. Phys. A 116(2), 799–804 (2014).

    Article  ADS  Google Scholar 

  13. M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, Appl. Phys. B 100(4), 699–703 (2010)

    Article  ADS  Google Scholar 

  14. C.K. Chen, Y.C. Lai, Y.H. Yang, C.Y. Chen, T.J. Yen, Opt. Express 20, 6952 (2012)

    Article  ADS  Google Scholar 

  15. F.L. Zhang, Q. Zhao, J. Zhou, S.X. Wang, Opt. Express 21, 19675 (2013)

    Article  ADS  Google Scholar 

  16. J. Zhang, W. Liu, X. Yuan, and S. Qin, J. Optics 16(12), 125102 (2014)

    Article  ADS  Google Scholar 

  17. P. Ding, J. He, J. Wang, C. Fan, and E. Liang Appl. Optics 54(12), 3708–3714 (2015)

    Article  ADS  Google Scholar 

  18. F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. Qiu, Appl. Phys. Lett. 104, 131907 (2014)

    Article  ADS  Google Scholar 

  19. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Nat. Commun. 5 5753(2014)

    Article  ADS  Google Scholar 

  20. M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, Nat. Mater. 11(1), 30–33 (2012)

    Article  ADS  Google Scholar 

  21. X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, Appl. Phys. Lett. 91(14), 143122 (2007)

    Article  ADS  Google Scholar 

  22. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev ,Appl. Phys. Lett. 96(14), 143105 (2010)

    Article  ADS  Google Scholar 

  23. C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, Phys. Rev. Lett. 108(26), 263905 (2012)

    Article  ADS  Google Scholar 

  24. C. Argyropoulos, Opt. Express 23(18), 23787–23797 (2015)

    Article  ADS  Google Scholar 

  25. J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, Plasmonics 10(6), 1833–1839 (2015)

    Article  Google Scholar 

  26. X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, IEEE Photonics Tech. L. 27(12), 1321–1324 (2015)

    Article  ADS  Google Scholar 

  27. X. He, X. Yang, S. Li, S. Shi, F. Wu, and J. Jiang, Opt. Mater. Express, 6(10), 3075–3085 (2016).

    Article  Google Scholar 

  28. L. Wang, W. Li, and X. Jiang, Opt. Lett. 40(10), 2325–2328 (2015)

    Article  ADS  Google Scholar 

  29. J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, and X. He, Opt. Mater. Express 5(9), 1962–1971 (2015)

    Article  Google Scholar 

  30. X. Duan, S. Chen, H. Cheng, Z. Li and J. Tian, Opt. Lett. 38(4), 483–485 (2013)

    Article  ADS  Google Scholar 

  31. J. Q. Liu, Y. X. Zhou, L. Li, P. Wang, and A. V. Zayats, Opt. Express 23(10), 12524–12532 (2015)

    Article  ADS  Google Scholar 

  32. K. S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S.V. Dubonos, and A. Firsov, Nature 438(7065), 197–200 (2005)

    Article  ADS  Google Scholar 

  33. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science 320(5873), 206–209 (2008)

    Article  ADS  Google Scholar 

  34. Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, ACS Nano 6(11), 10222–10228 (2012)

    Article  Google Scholar 

  35. H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, Nano Lett., 14, 4581–4586 (2014).

    Article  ADS  Google Scholar 

  36. H. Zhuang, F. Kong, K. Li, S. Sheng. Appl. Opt. 54, 25 (2015)

    Google Scholar 

  37. G. Yao, F. Ling, J. Yue, Q. Luo, J. Yao, J. Lightwave Technol. 34, 3937 (2016)

    Google Scholar 

  38. X. Shi, X. Su, Y. Yang, J. Appl. Phys. 117, 143101 (2015)

    Article  ADS  Google Scholar 

  39. G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, Plasmonics, 11(2), 381–387 (2016).

    Article  Google Scholar 

  40. Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, Europhysics Lett. 111(3), 34004 (2015).

    Article  ADS  Google Scholar 

  41. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, Opt. Express, 24(16), 17886–17899 (2016).

    Article  ADS  Google Scholar 

  42. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, Phys. Rev. E, 71(3), 036617 (2005).

    Article  ADS  Google Scholar 

  43. F.Y. Meng, Q. Wu, D. Erni, K. Wu, J.C. Lee, IEEE Trans. Microw. Theory 60, 3013 (2012)

    Article  Google Scholar 

  44. L. Zhu, L. Dong, J. Opt. 16(12), 125105 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61501275), the Science Foundation Project of Heilongjiang Province of China (Grant No. QC2015073), the technology bureau of Qiqihar city of Heilongjiang Province of China (Grant No. GYGG-201511), and the Program for Young Teachers Scientific Research in Qiqihar University (Grant No. 2014k-z05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Dong, L., Guo, J. et al. Tunable electromagnetically induced transparency in hybrid graphene/all-dielectric metamaterial. Appl. Phys. A 123, 192 (2017). https://doi.org/10.1007/s00339-017-0821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0821-9

Keywords

Navigation