Skip to main content
Log in

A novel high-performance supercapacitor based on high-quality CeO2/nitrogen-doped reduced graphene oxide nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we have developed a novel nanocomposite via deposition of ceria (CeO2) on nitrogen-doped reduced graphene (CeO2/NRGO). NRGO was synthesized through a facile, safe, and scalable method to achieve simultaneous thermal reduction along with nitrogen doping of graphene oxide (GO) in air at much lower reaction temperature. CeO2/NRGO was prepared via a sonochemical method in which ceria nanoparticles were uniformly distributed on NRGO sheets. The structure and morphology of CeO2/NRGO nanocomposites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and Raman spectroscopy. Electrochemical properties of the proposed nanocomposite electrodes were investigated by cyclic voltammetry (CV), galvanostatic charge/discharge, continuous cyclic voltammetry (CCV), and electrochemical impedance spectroscopy (EIS) measurements. CeO2–NRGO nanocomposite electrodes showed excellent supercapacitive behavior, including much higher specific capacitance (230 F g−1 at 2 mV s−1) and higher rate capability compared to pure N-graphene. The cycling stability of the electrodes was measured by continues cyclic voltammetry (CCV) technique. The CCV showed that the specific capacitance of the CeO2/NRGO and NRGO nanocomposite maintained at 94.1 and 93.2% after 4000 cycles. The results suggest its promising potential as efficient electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.E. Conway, Electrochemical supercapacitors, scientific fundamentals and technological applications. (Kluwer Academic/Plenum, New York, 1999)

    Google Scholar 

  2. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev 41, 797 (2012)

    Article  Google Scholar 

  3. Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, Science 332, 1537 (2011)

    Article  ADS  Google Scholar 

  4. L. Hao, X. Li, L. Zhi, Adv. Mater 25, 3899 (2013)

    Article  Google Scholar 

  5. L.L. Zhang, X. Zhao, Chem. Soc. Rev 38, 2520 (2009)

    Article  Google Scholar 

  6. R. Rakhi, W. Chen, D. Cha, H.N. Alshareef, J. Mater. Chem 21, 16197 (2011)

    Article  Google Scholar 

  7. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690 (2012)

    Article  ADS  Google Scholar 

  8. V. Khomenko, E. Frackowiak, F. Beguin, Electrochim. Acta 50, 2499 (2005)

    Article  Google Scholar 

  9. A. Pandolfo, A. Hollenkamp, J. Power Sources 157, 11 (2006)

    Article  ADS  Google Scholar 

  10. H. Gómez, M.K. Ram, F. Alvi, P. Villalba, E.L. Stefanakos, A. Kumar, J. Power Sources 196, 4102 (2011)

    Article  Google Scholar 

  11. P. Kossyrev, J. Power Sources 201, 347 (2012)

    Article  Google Scholar 

  12. E. Frackowiak, F. Beguin, Carbon 40, 1775 (2002)

    Article  Google Scholar 

  13. D.-W. Wang, F. Li, Z.-G. Chen, G.Q. Lu, H.-M. Cheng, Chem. Mater 20, 7195 (2008)

    Article  Google Scholar 

  14. S. Vivekchand, C.S. Rout, K. Subrahmanyam, A. Govindaraj, C. Rao, J. Chem Sci 120, 9 (2008)

    Article  Google Scholar 

  15. H. Gholipour-Ranjbar, M. R. Ganjali, P. Norouzi, H. R. Naderi, Mater. Res. Exp. 3, 075501 (2016)

    Article  Google Scholar 

  16. H. Gholipour-Ranjbar, M. R. Ganjali, P. Norouzi and H. R. Naderi, J. Mater. Sci. Mater. Electron. 27, 10163 (2016)

    Article  Google Scholar 

  17. J.S. Chen, Z. Wang, X.C. Dong, P. Chen, X.W.D. Lou, Nanoscale 3, 2158 (2011)

    Article  ADS  Google Scholar 

  18. A. Ambrosi, A. Bonanni, Z. Sofer, J.S. Cross, M. Pumera, Chem. Eur. J 17, 10763 (2011)

    Article  Google Scholar 

  19. Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Adv. Mater 24, 5610 (2012)

    Article  Google Scholar 

  20. K.H. Lee, J. Oh, J.G. Son, H. Kim, S.-S. Lee, ACS Appl. Mater. Interfaces 6, 6361 (2014)

    Article  Google Scholar 

  21. H.R. Naderi, P. Norouzi, M.R. Ganjali, H. Gholipour-Ranjbar, Powder Technol 302, 298 (2016)

    Article  Google Scholar 

  22. M. Mastragostino, C. Arbizzani, F. Soavi, J. Power Sources 97, 812 (2001)

    Article  ADS  Google Scholar 

  23. H.R. Naderi, P. Norouzi, M.R. Ganjali, Appl. Surf. Sci 366, 552 (2016)

    Article  ADS  Google Scholar 

  24. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi, J. Phys. Chem. B 110, 6015 (2006)

    Article  Google Scholar 

  25. D. Joung, V. Singh, S. Park, A. Schulte, S. Seal, S.I. Khondaker, J. Phys. Chem. C 115, 24494 (2011)

    Article  Google Scholar 

  26. A. S. Dezfuli, M. R. Ganjali, H. R. Naderi, P. Norouzi, RSC Adv. 5, 46050 (2015)

    Article  Google Scholar 

  27. D. Du, P. Li, J. Ouyang, ACS Appl. Mater. Interfaces 7, 26952 (2015)

    Article  Google Scholar 

  28. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 4, 4806 (2010)

    Article  Google Scholar 

  29. W. S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  30. M. Zhou, X. Li, J. Cui, T. Liu, T. Cai, H. Zhang, S. Guan, Int J Electrochem Sci 7, 9984 (2012)

    Google Scholar 

  31. L. Cancado, M. Pimenta, B. Neves, M. Dantas, A. Jorio, Phys. Rev. Lett. 93, 27401 (2004)

    Article  Google Scholar 

  32. L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, Z. Yao, S. Lu, W. Cui, X. Hua, B. Zou, CrystEngComm 15, 3739 (2013)

    Article  Google Scholar 

  33. T.N. Huan, T. Van Khai, Y. Kang, K.B. Shim, H. Chung, J. Mater. Chem 22, 14756 (2012)

    Article  Google Scholar 

  34. M. Sathish, S. Mitani, T. Tomai, I. Honma, J. Mater. Chem. A. 2, 4731 (2014)

    Article  Google Scholar 

  35. M.J. Ju, J.C. Kim, H.-J. Choi, I.T. Choi, S.G. Kim, K. Lim, J. Ko, J.-J. Lee, I.-Y. Jeon, J.-B. Baek, ACS Nano 7, 5243 (2013)

    Article  Google Scholar 

  36. M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, J.H. Lee, J. Mater. Chem. A 1, 9792 (2013)

    Article  Google Scholar 

  37. X. Xie, L. Gao, Carbon 45, 2365 (2007)

    Article  Google Scholar 

  38. S. Ardizzone, G. Fregonara, S. Trasatti, Electrochim. Acta 35, 263 (1990)

    Article  Google Scholar 

  39. H. Gholipour-Ranjbar, M.R. Ganjali, P. Norouzi, H.R. Naderi, Ceram. Int. 42, 12097 (2016)

    Article  Google Scholar 

  40. H.R. Naderi, H.R. Mortaheb, A. Zolfaghari, J. Electroanal. Chem 719, 98 (2014)

    Article  Google Scholar 

  41. H.Y. Tan, Z.Y. Ren, Mater. Sci. Forum 847, 14 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagher Gholivand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, H., Gholivand, M.B. A novel high-performance supercapacitor based on high-quality CeO2/nitrogen-doped reduced graphene oxide nanocomposite. Appl. Phys. A 123, 187 (2017). https://doi.org/10.1007/s00339-017-0817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0817-5

Keywords

Navigation