Skip to main content
Log in

Flow and heat transfer of a weak concentration micropolar-nanofluid over steady/unsteady-moving surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A mathematical simulation to the cooling process of a flat moving surface using a weak concentration micropolar-nanofluid as a cooling medium has been investigated. The modelling based on the conservation equations of the unsteady case for the momentum and thermal boundary layer taking into consider the effect of suction process and thermal radiation. Using similarity transformation technique, the conservation equations have been transformed to ordinary differential equations that are solved numerically for general case and analytically for the steady case. Surface shear stress, couple shear stress, and the rate of heat transfer are deduced, and the impact of these physical characteristics on the final quality and the mechanical properties of the surface to be cooled discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a,b,c :

Constants parameter (t−1)

T :

Temperature (K)

\({q_{\text{r}}}\) :

Radiative heat flux \(\left( {\frac{{\text{W}}}{{{{\text{m}}^2}}}} \right)\)

k :

Thermal conductivity (W/mk)

\({C_{\text{p}}}\) :

Specific heat (J/kg K)

\({C_{\text{f}}}\) :

Skin friction coefficient

j :

Micro-inertia per unit mass

\(\gamma\) :

Spin gradient viscosity

\({k^\prime }\) :

Vortex viscosity

\(\phi\) :

Nanoparticles volume fraction

\(\omega\) :

Angular velocity (rad/s)

\(\rho\) :

Fluid density (kg/m3)

\(\mu\) :

Dynamic viscosity (Ns/m2)

\(\nu\) :

Kinematic viscosity (m2/s)

\(\sigma\) :

Stefen–Boltzman constant (1.3806488 × 10−23 m2 kg/s2 K)

\({\alpha ^*}\) :

Mean absorption coefficient

\(K = \frac{{{k^\prime }}}{\mu }\) :

Material parameter

\(Pr = \frac{{{\nu _{\text{f}}}{{(\rho {C_{\text{p}}})}_{\text{f}}}}}{{{k_{\text{f}}}}}\) :

Prandtl number

\({\text{Rd}} = \frac{{4\sigma T_\infty ^3}}{{{k_{\text{f}}}{\alpha ^ * }}}\) :

Radiation parameter

\(A = \frac{c}{a}\) :

Unsteadiness parameter

fw :

Suction parameter

f:

Fluid phase

nf:

Nanofluid

s:

Solid particles

w:

Condition of the wall

\(\infty\) :

Ambient condition

References

  1. S.U.S. Choi, J.A. Eastman Enhancing conductivity of fluids with nanoparticles. ASME Fluid Eng. Div. 231, 99–105, (1995)

    Google Scholar 

  2. H.F. Oztop, E. Abu Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336, (2008)

    Article  Google Scholar 

  3. M. Azizah, A. Syakila, I. Pop, Flow and heat transfer over an unsteady shrinking sheet with suction in nanofluids. Int. J. Heat Mass Transf. 55, 1888–1897 (2011)

    Google Scholar 

  4. R. Nazar, L. Tham, I. Pop, Mixed convection boundary layer flow from a horizontal circular cylinder embedded in a porous medium filled with a nanofluid. Tranp. Porous Med. 86, 517–536 (2011)

    Article  Google Scholar 

  5. M. Hamad, Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. Int. Commun. Heat Mass Transf. 38, 487–492, (2011)

    Article  Google Scholar 

  6. N.A. Yacob, A. Ishak, R. Nazar, I. Pop, Boundary layer flow past a stretching/ shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid. Nanoscale Res. Lett. 6, 1–7 (2011)

    Article  Google Scholar 

  7. N. Aminreza, P. Rashid, G. Mohamed, Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int. J. Therm. Sci. 54, 1–9, (2012)

    Article  Google Scholar 

  8. E.M.A Elbashbeshy, T.G. Emam, M.S. Abdel-wahed, Effect of magnetic field on flow and heat transfer of a nanofluid over an unsteady continuous moving surface in the presence of suction/injection. Int. J. Appl. Math. 14(10), 436–442, (2012)

    Google Scholar 

  9. M. Qasim, Z. Khan, R. Lopez, W. Khan, Heat and mass transfer in nanofluid thin film over an unsteady stretching sheet using Buongiorno’s model. Eur. Phys. J. Plus 16, 131 (2016)

    Google Scholar 

  10. N. Anbuchezhian, K. Srinivasan, K. Chandrasekaran, R. Kandasamy, Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy. Appl. Math. Mech. 33, 765–780 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. E.M.A Elbashbeshy, T.G. Emam, M.S. Abdel-wahed, Flow and heat transfer over a moving surface with non-linear velocity and variable thickness in a nanofluid in the presence of thermal radiation. Can. J. Phys. 91, 699–708 (2013)

    Google Scholar 

  12. E.M.A. Elbashbeshy, T.G. Emam, M.S. Abdel-wahed, An exact solution of boundary layer flow over a moving surface embedded into a nanofluid in the presence of magnetic field and suction/injection. Heat Mass Transf. 50(1), 57–64 (2014)

    Article  ADS  Google Scholar 

  13. E.M.A. Elbashbeshy, T.G. Emam, M.S. Abdel-wahed, The effect of thermal radiation and heat generation on the mechanical properties of unsteady continuous moving cylinder in a nanofluid in the presence of suction or injection. Therm. Sci. 19, 1591–1601, (2015)

    Article  Google Scholar 

  14. M.S. Abdel-wahed, E.M.A. Elbashbeshy, T.G. Emam, Flow and heat transfer over a moving surface with non-linear velocity and variable thickness in a nanofluid in the presence of Brownian motion. Appl. Math. Comput. 254, 1591–1601 (2015)

    MathSciNet  Google Scholar 

  15. Y. Yain, N. Amin, I. Pop, Unsteady boundary layer flow of a micropolar fluid near rear stagnation point of a plane surface. Int. J. Therm. Sci. 42, 995–1001 (2003)

    Article  Google Scholar 

  16. N. Sandeep, C. Sulochana, Dual solution for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink. Eng. Sci. Technol. 18, 738–745, (2015)

    Google Scholar 

  17. M. Rahman, T. Sultana, Radiative Heat transfer flow of micropolar fluid with variable heat flux in a porous medium. Nonlinear Anal. Model. Control 13(1), 17–87 (2008)

    MATH  Google Scholar 

  18. M. Rahman, A. El-tayeb, S.M.M. Rahman, Thermo-micropolar fluid flow along a vertical permeable plate with uniform surface heat flux in the presence of heat generation. Therm. Sci. 13(1), 23–36 (2009)

    Article  Google Scholar 

  19. M.E.M. Khedr, A.J. Chamkha, M. Bayomi, MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption. Nonlinear Anal. Model. Control 14(1), 27–40 (2009)

    MATH  Google Scholar 

  20. H.A.M. EL-Arabawy, Effects of suction/injection on the flow of micropolar fluid past a continuously moving plate in the presence of radiation. Int J Heat Mass Transf. 46, 1471–1477 (2003)

    Article  MATH  Google Scholar 

  21. A. Ishak, R. Nazar, I. Pop, Heat transfer over a stretching surface with variable heat flux in micropolar fluids. Phys. Lett. A 372, 559–561 (2007)

    Article  ADS  MATH  Google Scholar 

  22. A.A. Saad, M.S. Abdel-wahed, Heat transfer over unsteady moving surface with heat generation and thermal radiation in micropolar fluid in the presence of suction/injection. Int J Energy Technol 3(31), 1–7 (2011)

    Google Scholar 

  23. L.A. Ezzah, A. Syakila, I. Pop, Flow over a permeable stretching sheet in micropolar nanofluids with suction. AIP Conf. Proc. 1605, 428–433 (2014)

    Google Scholar 

  24. S.T. Hussain, S. Nadeem, R.U. Haq, Model-based analysis of micropolar nanofluid flow over a stretching surface. Eur. Phys. J. Plus 129, 161 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Abdel-wahed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-wahed, M.S. Flow and heat transfer of a weak concentration micropolar-nanofluid over steady/unsteady-moving surface. Appl. Phys. A 123, 195 (2017). https://doi.org/10.1007/s00339-017-0815-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0815-7

Keywords

Navigation