Skip to main content
Log in

Vibration analysis of single-walled carbon peapods based on nonlocal Timoshenko beam theory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, vibration behavior of single-walled carbon nanotube encapsulating C60 molecules is studied using the Eringen’s nonlocal elasticity theory within the frame work of Timoshenko beam theory. The governing equation and boundary conditions are derived using Hamilton’s principle. It is considered that the nanopeapod is embedded in an elastic medium and the C60 molecules are modeled as lumped masses attached to the nanobeam. The Galerkin’s method is applied to determine the natural frequency of the nanobeam with clamped–clamped boundary conditions. Effects of nonlocality, foundation stiffness, and ratio of the fullerenes’ mass to the nanotube’s mass on the natural frequencies are investigated. In addition, by vanishing effects of shear deformation and rotary inertia, the results based on Euler–Bernoulli beam theory are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Iijima, Sci 354, 56 (1991)

    Google Scholar 

  2. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  3. R.D. Firouz-Abadi, M.M. Fotouhi, H. Haddadpour, Phys. Lett. A 375, 3593 (2011)

    Article  ADS  Google Scholar 

  4. N.M. Guseinov, O.Z. Alekperov, S.S. Guseinova, Mod. Phys. Lett. B 20, 1771 (2006)

    Article  ADS  Google Scholar 

  5. C. Meingast, F. Gugenberger, Mod. Phys. Lett. B 7, 1703 (1993)

    Article  ADS  Google Scholar 

  6. F. Tornabene, N. Fantuzzi, M. Bacciocchi, E. Viola, Compos. Part B Eng 89, 187 (2016)

    Article  Google Scholar 

  7. S. Brischetto, F. Tornabene, N. Fantuzzi, M. Bacciocchi, Technologies 3, 259 (2015)

    Article  Google Scholar 

  8. W.Y. Choi, J.W. Kang, H.J. Hwang, Phys. E Low Dimens. Syst. Nanostruct 23, 135 (2004)

    Article  ADS  Google Scholar 

  9. F. Cui, C. Luo, J. Dong, Phys. Lett. A 327, 55 (2004)

    Article  ADS  Google Scholar 

  10. H. Duan, X. Gao, G. Fu, J. Li, Phys. Lett. A 375, 1412 (2011)

    Article  ADS  Google Scholar 

  11. J.W. Kang, H.J. Hwang, Phys. E Low Dimens. Syst. Nanostruct 27, 245 (2005)

    Article  ADS  Google Scholar 

  12. B.W. Smith, D.E. Luzzi, Chem. Phys. Lett. 321, 169 (2000)

    Article  ADS  Google Scholar 

  13. B.W. Smith, M. Monthioux, D.E. Luzzi, Nature 396, 323 (1998)

    Article  ADS  Google Scholar 

  14. R.A. Toupin, Arch. Ration. Mech. Anal 11, 385 (1962)

    Article  Google Scholar 

  15. R.D. Mindlin, H.F. Tiersten, Arch. Ration. Mech. Anal 11, 415 (1962)

    Article  Google Scholar 

  16. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct 39, 2731 (2002)

    Article  Google Scholar 

  17. R.D. Mindlin, N.N. Eshel, Int. J. Solids Struct 4, 109 (1968)

    Article  Google Scholar 

  18. R.D. Mindlin, Int. J. Solids Struct 1, 417 (1965)

    Article  Google Scholar 

  19. A.C. Eringen, Int. J. Eng. Sci 10, 1 (1972)

    Article  Google Scholar 

  20. A.C. Eringen, Int. J. Eng. Sci 10, 425 (1972)

    Article  Google Scholar 

  21. I.H. Shames, Energy and finite element methods in structural mechanics. (CRC Press, Boca Raton, 1985)

    MATH  Google Scholar 

  22. X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes, Nature 421, 496 (2003)

    Article  ADS  Google Scholar 

  23. Z.-B. Shen, D.-K. Li, D. Li, G.-J. Tang, J. Mech. Sci. Technol 26, 1577 (2012)

    Article  Google Scholar 

  24. M.A. Eltaher, M.A. Agwa, F.F. Mahmoud, Int. J. Mech. Mater. Des 12, 211 (2016)

    Article  Google Scholar 

  25. R.D. Firouz-Abadi, M. Hojjati, M. Rahmanian, Phys. E Low Dimens. Syst. Nanostruct 56, 410 (2014)

    Article  ADS  Google Scholar 

  26. A.C. Eringen, Nonlocal continuum field theories. (Springer, Berlin, 2002)

    MATH  Google Scholar 

  27. A.C. Eringen, J. Appl. Phys 54, 4703 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghadiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiri, M., Hajbarati, H. & Safi, M. Vibration analysis of single-walled carbon peapods based on nonlocal Timoshenko beam theory. Appl. Phys. A 123, 260 (2017). https://doi.org/10.1007/s00339-017-0811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0811-y

Keywords

Navigation