Skip to main content
Log in

Facile synthesis of CuS nanostructured flowers and their visible light photocatalytic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Uniform CuS nanostructured flowers have been generated conveniently in aqueous solution without using any surfactant. The products were characterized by XRD, XPS, EDX, FESEM, TEM, UV-Vis, PL, and BET techniques. The as-prepared CuS nanostructured flowers have a diameter of about 800–1200 nm and are in high yield. The flowers were formed by the assembly of numerous nanosheets. A tentative explanation for the growth mechanism of CuS nanostructured flowers was proposed. UV–Vis absorption spectrum and PL spectrum were used to investigate the optical properties of CuS nanostructured flowers. UV–Vis absorption spectrum shows a broad absorption band in the visible range and PL spectrum shows a strong ultraviolet emission peak. The BET surface area of the as-prepared product was determined to be 61.55 m2/g with a dominant pore diameter of 26 nm. The photocatalytic activity was evaluated by measuring the decomposition rate of methylene blue aqueous solution under visible light irradiation and results indicated that the as-prepared CuS nanostructured flowers exhibit enhanced visible light photocatalytic activity with the assistence of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z. He, W. Que, J. Chen, X. Yin, Y. He, J. Ren, ACS Appl. Mater. Interfaces 4, 6816 (2012)

    Article  Google Scholar 

  2. Y. Cui, Q. Jia, H. Li, J. Han, L. Zhu, S. Li, Y. Zou, J App. Surf. Sci 290, 233 (2014)

    Article  ADS  Google Scholar 

  3. D.A. Islam, A. Chakraborty, B. Bhattacharya, U. Sarkar, H. Acharya, J. Nanopart. Res 18, 114 (2016)

    Article  ADS  Google Scholar 

  4. S. Dutta, C. Ray, S. Mallick, S. Sarkar, R. Sahoo, Y. Negishi, T. Pal, J. Phys. Chem. C 119, 23790 (2015)

    Article  Google Scholar 

  5. J. Kundu, D. Pradhan, ACS Appl. Mater. Interfaces 6, 1823 (2014)

    Article  Google Scholar 

  6. H.L. Xu, W.Z. Wang, W. Zhu, Mater. Lett 60, 2203 (2006)

    Article  Google Scholar 

  7. F.M. Cheng, Z.Y. Qi, F.Q. Xiao, T.Z. Gen, L.L. Mao, Q.F. Sheng, Colloids Surf., A 371, 14 (2010)

    Article  Google Scholar 

  8. T. Thongtem, A. Phuruangrat, S. Thongtem. Mater. Lett. 64, 136 (2010)

    Article  Google Scholar 

  9. J. Liu, D. Xue, Mater. Res. Bull 45, 309 (2010)

    Article  Google Scholar 

  10. H. Qi, J.F. Huang, L.Y. Cao, J.P. Wu, D.Q. Wang, Ceram. Int. 38, 2195 (2012)

    Article  Google Scholar 

  11. J. Kundu, D. Pradhan, N. J. Chem. 37, 1470 (2013)

    Article  Google Scholar 

  12. K.V. Singh, A.A. Martinez-Morales, G.T. Senthil Andavan, K.N. Bozhilov, M. Ozkan, Chem. Mater. 19, 2446 (2007)

    Article  Google Scholar 

  13. N. Solanki, R. Sengupta, Z.V.P. Murthy, Solid State Sci. 12, 1560 (2010)

    Article  ADS  Google Scholar 

  14. P. Roy, K. Mondal, S.K. Srivastava, Cryst. Growth Des. 8, 1530 (2008)

    Article  Google Scholar 

  15. W.Z. Wang, L. Ao, Mater. Chem. Phys. 109, 77 (2008). (2008)

    Google Scholar 

  16. H.T. Zhang, G. Wu, X.H. Chen, Mater. Chem. Phys. 98, 298 (2006)

    Article  ADS  Google Scholar 

  17. J.R. Huang, Y.Y. Wang, C.P. Gu, M.H. Zhai, Mater. Lett. 99, 31 (2013)

  18. Q.W. Li, Y. Xue, Y.C. Zhu, Y.T. Qian, J. Nanosci. Nanotech. 13, 1265 (2013)

    Article  Google Scholar 

  19. Q.W. Shu, C.M. Li, P.F. Gao, M.X Gao, C.Z. Huang, RSC Adv. 5, 17458 (2015)

  20. C. Wu, J.B. Shi, C.J. Chen, Y.C. Chen, Y.T. Lin, P.F. Wu, S.Y. Wei, Mater. Lett. 62, 1074 (2008)

    Article  Google Scholar 

  21. C.J. Raj, B.C. Kim, W.J. Cho, W.G. Lee, K.H. Y. Seo Yu, J. Alloys Compd. 586, 191 (2014)

  22. Y. Han, Y.P. Wang, W.H. Gao, Y.J. Wang, L.F. Jiao, H.T. Yuan, S.X. Liu, Powder Technol. 212, 64 (2011)

    Article  Google Scholar 

  23. H. Wang, J.R. Zhang, X.N. Zhao, S. Xu, J.J. Zhu, Mater. Lett. 55, 253 (2002)

    Article  Google Scholar 

  24. C.J. Ranter, M. Rouse, Cryst. Struct. Commun. 6, 399 (1977)

    Google Scholar 

  25. Q.L. Huanga, H. Chenb, Y.C. Zhang, C.L. Wu, J. Alloys Compd. 509, 6382 (2011)

    Article  Google Scholar 

  26. C. Xu, L. Wang, D.B. Zou, T.K. Ying, Mater. Lett. 62, 3181 (2008)

    Article  Google Scholar 

  27. M.M. Li, Q.S. Wu, J.L. Shi, J. Alloys Compd. 489, 343 (2010)

    Article  Google Scholar 

  28. T.Y. Ding, M.S. Wang, S.P. Guo, G.C. Guo, J.S. Huang. Mater. Lett. 62, 4529 (2008)

    Article  Google Scholar 

  29. Z.Y. Yao, X. Zhu, C.Z. Wu, X.J. Zhang, Y. Xie, Cryst. Growth Des. 7, 1256 (2007)

    Article  Google Scholar 

  30. M. Saranya, C. Santhosh, R. Ramachandran, P. Kollu, P. Saravanan, M. Vinoba, S.K. Jeong, A.N. Grace, Powder Technol. 252, 25 (2014)

    Article  Google Scholar 

  31. S.M. Ou, Q. Xie, D.K. Ma, J.B. Liang, X.K. Hu, W.C. Yu, Y.T. Qian, Mater. Chem. Phys 94, 460 (2005)

    Article  Google Scholar 

  32. F.L. Deepak, A. Govindaraj, C.N.R. Rao, J. Nanosci. Nanotech. 2, 417 (2002)

    Article  Google Scholar 

  33. Z.H. Wang, S.P. Zhao, S.Y. Zhu, Y.L. Sun, M. Fang, Cryst. Eng. Comm. 13, 2262 (2011)

    Article  Google Scholar 

  34. A. Ghosh, C. Kulsi, D. Banerjee, A. Mondal, Appl. Surf. Sci. 369, 525 (2016)

    Article  ADS  Google Scholar 

  35. X. Feng, H. Guo, K. Patel, H. Zhou, X. Lou, Chem. Eng. J. 244, 327 (2014)

    Article  Google Scholar 

  36. A. Ghosh, A. Mondal, Appl. Surf. Sci. 328, 63 (2015)

    Article  ADS  Google Scholar 

  37. L. Mi, W. Wei, Z. Zheng, Y. Gao, Y. Liu, W. Chen, X. Guan, Nanoscale 5, 6589 (2013)

    Article  ADS  Google Scholar 

  38. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  39. Z. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying, J. Phys. Chem., B 102, 10871 (1998)

    Article  Google Scholar 

  40. K.J. Huang, J.Z. Zhang, Y. Fan, J. Alloys Compd. 625, 158 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Chongqing Key Natural Science Foundation (cstc2012jjB50011), the Fundamental Research Funds for the Central Universities (Project No. XDJK2016C003), the Foundation of Chongqing Municipal Education Commission (KJ1711292), and scientific research project of Chongqing University of Arts and Sciences (Project No. Y2015XC28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Li, Y. & Li, Q. Facile synthesis of CuS nanostructured flowers and their visible light photocatalytic properties. Appl. Phys. A 123, 196 (2017). https://doi.org/10.1007/s00339-017-0800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0800-1

Keywords

Navigation