Applied Physics A

, 123:174 | Cite as

Effect of Au thickness on AuAg bimetallic growth on reconstructed Si(5 5 12) surfaces

  • Anjan Bhukta
  • Arnab Ghosh
  • Puspendu Guha
  • Paramita Maiti
  • Biswarup Satpati
  • Parlapalli Venkata Satyam
Article

Abstract

Large, stable and single domain unit cell with row-like structures makes reconstructed Si(5 5 12) surface an important one-dimensional growth template of nanostructures. We report on the morphological aspects of the growth of AuAg bimetallic nanostructures on a reconstructed Si(5 5 12) surface that has been deposited with a 0.5 monolayer (ML) Ag and various Au thicknesses (0.5 to 5.0 ML) to determine the optimum gold thickness for a growth of high aspect ratio of AuAg nanostructures. The mean aspect ratio of AuAg nanostructures increases up to Au thickness of 3.0 ML and for larger thickness the mean aspect ratio decreases. The prior growth of 0.5 ML Ag on reconstructed surface result in the formation of one-dimensional Ag strips which are helping for preferential nucleation sites along Si\(\left\langle 1\bar{1}0 \right\rangle\) to form AuAg bimetallic long aspect ratio structures. Followed by these early processes of growth, for Au thickness >3.0 ML, excess Au ad-atoms begin to accumulate along Si\(\left\langle 66\bar{5} \right\rangle\) and consequences reduction of mean aspect ratio of bimetallic nanostructures. Nanostructures are grown using molecular beam epitaxy method under ultra-high vacuum conditions and in situ scanning tunneling microscopy has been used to investigate the morphological variations. Determination of structural aspects and compositional analysis has been carried out using Rutherford backscattering spectrometry and high-resolution (scanning) transmission electron microscopy methods.

References

  1. 1.
    Y. Volokitin, J. Sinzig, L.J. De Jongh, G. Schmid, M.N. Vargaftik, I.I. Moiseevi, Nature 384, 621 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    P.J. Feibelmen, Phys. Rev. B 27, 1991 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    A. Nel, T. Xia, L. Mädler, N. Li, Science 311, 622 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys 36, 167 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    K.R. Gopidas, J.K. Whitecell, M.A. Fox, Nano Lett. 3, 1757 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    W.L. Barnes, Alain Dereux, W. T, Ebbesen. Nature 424, 824 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)CrossRefGoogle Scholar
  8. 8.
    E. Iglesia, S.L. Soled, R.A. Fiato, G.H. Via, J. Catal 143, 345 (1993)CrossRefGoogle Scholar
  9. 9.
    Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, Y. Maeda, J. Phys. Chem. B 104, 6028 (2000)CrossRefGoogle Scholar
  10. 10.
    X. Li, J. Yao, F. Liu, H. He, M. Zhou, N. Mao, P. Xiao, Y. Zhang, Sens. Actuators B 181, 501 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Liu, H. Zhou, Q. Wang, F. Zeng, Y. Kuang, J. Mater. Sci 47, 2188 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    H. Okamoto and T. B. Massalski, Bull. Alloy Phase Diagr. 4, 30 (1983)CrossRefGoogle Scholar
  13. 13.
    J. L. White, R. L. Orr, R. Hultgren, Acta Metallurg. 5, 747 (1957)CrossRefGoogle Scholar
  14. 14.
    W.C. Mallard, A.B. Gardner, R.F. Bass, L.M. Slifkin, Phys. Rev 129, 617 (1963)ADSCrossRefGoogle Scholar
  15. 15.
    J.H. Liu, A.Q. Wang, Y.S. Chi, H.P. Lin, C.Y. Mou, J. Phys. Chem. B 109, 40 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Zheng, H. Lin, Y. Wang, X. Zheng, X. Duan, Y. Yuan, J. Catal 297, 110 (2013)CrossRefGoogle Scholar
  17. 17.
    M.P. Mallin, C.J. Murphy, Nano Lett. 2, 1235 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    H.R. Gong, Solid State Commun. 149, 2143 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    S.C. Fain Jr., J.M McDavid. Phys. Rev. B 9, 5099 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    R.A. Zhachuk, S.A. Teys, A.E. Dolbak, B. Olshanetsky, Surf. Sci 565, 37 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    H. Omi, T. Ogino, Appl. Phys. Lett. 71, 2163 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    H. Omi, T. Ogino, Phys. Rev. B 59, 7521 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    H. Kim, H. Li, Y. Zhu, J.R. Hahn, J.M. Seo, Surf. Sci 601, 1831 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A.A. Baski, S.C. Erwin, L.J. Whitman, Science 269, 1556 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    T. Suzuki, H. Minoda, Y. Tanishiro, K. Yagi, Surf. Sci 348, 335 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    J.W. Dickinson, J.C. Moore, A.A. Baski, Surf. Sci 561, 193 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    A.A. Baski, K.M. Jones, K.M. Saoud, Ultramicroscopy 86, 23 (2001)CrossRefGoogle Scholar
  28. 28.
    A.A. Baski, K.M. Saoud, K.M. Jones, Appl. Surf. Sci 182, 216 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    H.H. Song, K.M. Jones, A.A. Baski, J. Vac. Sci. Technol. A 17, 1696 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    J. Yuhara, M. Inoue, K. Morita, J. Vac. Sci. Technol. A 11, 2714 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Fukaya, I. Matsuda, M. Hashimoto, K. Kubo, T. Hirahara, S. Yamazaki, W.H. Choi, H.W. Yeom, S. Hasegawa, A. Kawasuso, A. Ichimiya, Surf. Sci 606, 919 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    S. Günther, A. Kolmakov, J. Kovac, M. Marsi, M. Kiskinova, Phys. Rev. B 56, 5003 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    A. Ichimiya, H. Nomura, Y. Ito, H. Iwashige, J. Cryst. Growth 150, 1169 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    A. Bhukta, T. Bagarti, P. Guha, B. Satpati, P. B. Rakshit, Maiti, P. V. Satyam (Unpublished)Google Scholar
  35. 35.
    D.K. Goswami, B. Satpati, P.V. Satyam, B.N. Dev, Curr. Sci. (India) 84, 903 (2003)Google Scholar
  36. 36.
    M. Mayer, Nucl. Instr. Meth. B 194, 177 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    W. Zhou, Y. Zhu, T. Ji, X. Hou, Q. Cai, Nanotechnology 17, 852 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    J. Nogami, B.Z. Liu, M.V. Katkov, C. Ohbuchi, O.N. Birge. Phys. Rev. B 63, 233305 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    R. Batabyal, S. Patra, A. Roy, B.N. Dev, Appl. Surf. Sci 257, 3248 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    U.M. Bhatta, J.K. Dash, A. Roy, A. Rath, P.V. Satyam, J. Phys.: Condens. Matter 21, 205403 (2009)ADSGoogle Scholar
  41. 41.
    H. Suzuki, H. Nakahara, S. Miyata, A. Ichimiya, Surf. Sci 493, 166 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    B.Z. Liu, J. Nogami, Nanotechnology 14, 873 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    D.B. Williams, C.B. Carter, Transmission electron microscopy: a textbook for materials science (Springer, 1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Anjan Bhukta
    • 1
    • 2
    • 3
  • Arnab Ghosh
    • 4
  • Puspendu Guha
    • 1
    • 2
  • Paramita Maiti
    • 1
    • 2
  • Biswarup Satpati
    • 5
  • Parlapalli Venkata Satyam
    • 1
    • 2
  1. 1.Institute of PhysicsSachivalaya MargBhubaneswarIndia
  2. 2.Homi Bhabha National InstituteTraining School ComplexMumbaiIndia
  3. 3.School of Basic SciencesIndian Institute of Technology BhubaneswarBhubaneswarIndia
  4. 4.Department of PhysicsIndian Institute of Technology KharagpurKharagpurIndia
  5. 5.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations