Skip to main content

Advertisement

Log in

Preparation and characterization of porous bioceramic layers on pure titanium surfaces obtained by micro-arc oxidation process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Fluorapatite (FA) has better chemical and thermal stability than hydroxyapatite (HA), and has thus attracted significant interest for biomaterial applications in recent years. In this study, porous bioceramic layers were prepared on pure titanium surfaces using a micro-arc oxidation (MAO) technique with an applied voltage of 450 V and an oxidation time of 5 min. The MAO process was performed using three different electrolyte solutions containing calcium fluoride (CaF2), calcium acetate monohydrate (Ca(CH3COO)2·H2O), and sodium phosphate monobasic dihydrate (NaH2PO4·2H2O) mixed in ratios of 0:2:1, 1:1:1, and 2:0:1, respectively. The surface morphology, composition, micro-hardness, porosity, and biological properties of the various MAO coatings were examined and compared. The results showed that as the CaF2/Ca(CH3COO)2·H2O ratio increased, the elemental composition of the MAO coating transformed from HA, A-TiO2 (Anatase) and R-TiO2 (Rutile); to A-TiO2, R-TiO2, and a small amount of HA; and finally A-TiO2, R-TiO2, CaF2, TiP2O5, and FA. The change in elemental composition was accompanied by a higher micro-hardness and a lower porosity. The coatings exhibited a similar in vitro bioactivity performance during immersion in simulated body fluid for 7–28 days. Furthermore, for in initial in vitro biocompatibility tests performed for 24 h using Dulbecco’s Modified Eagle Medium (DMEM) supplement containing 10%Fetal bovine serum, the attachment and spreading of osteoblast-like osteosarcoma MG63 cells were found to increase slightly with an increasing CaF2/Ca(CH3COO)2·H2O ratio. In general, the results presented in this study show that all three MAO coatings possess a certain degree of in vitro bioactivity and biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Sennerby, P. Thomsen, L.E. Ericson, Ultrastructure of the bone-titanium interface in rabbits. J. Mater. Sci. Mater. Med. 3 (4), 262–271 (1992).

    Article  Google Scholar 

  2. D.E. Steflif, A.L. Sisk, G.R. Parr, L.K. Garner, P.J. Hanes, F.T. Lake, D.J. Berkery, P. Brewer, Osteogenesis at the dental implant interface: high-voltage electron microscopic and conventional transmission electron microscopic observations. J. Biomed. Mater. Res 27(6), 791–800 (1993)

    Article  Google Scholar 

  3. C.S. Chien, T.Y. Liao, T.F. Hong, T.Y. Kuo, C.H. Chang, M.L. Yeh, T.M. Lee, Surface microstructure and bioactivity of hydroxyapatite and fluorapatite coatings deposited on Ti-6Al-4V substrates using Nd-YAG laser. J. Med. Biol. Eng. 34 (2), 109–115 (2014).

    Article  Google Scholar 

  4. C.S. Chien, Y.S. Ke, T.Y. Kuo, T.Y. Liao, T.M. Lee, T.F. Hong, Effect of TiO2 addition on surface microstructure and bioactivity of fluorapatite coatings deposited using Nd:YAG laser. Proc. Inst. Mech. Eng. H. 228 (4), 379–387 (2014).

    Article  Google Scholar 

  5. C.S. Chien, T.Y. Liao, T.F. Hong, T.Y. Kuo, J.L. Wu, T.M. Lee, Investigation into microstructural properties of fluorapatite Nd-YAG laser clad coatings with PVA and WG binders. Surf. Coat. Technol 205(10), 3141–3146 (2011)

    Article  Google Scholar 

  6. C.S. Chien, T.F. Hong, T.J. Han, T.Y. Kuo, T.Y. Liao, Effects of different binders on microstructure and phase composition of hydroxyapatite Nd–YAG laser clad coatings. Appl. Surf. Sci 257(6), 2387–2393 (2011)

    Article  ADS  Google Scholar 

  7. T.F. Hong, Z.X. Guo, R. Yang, Fabrication of porous titanium scaffold materials by a fugitive filler method. J. Mater. Sci. Mater. Med. 19, 3489–3495 (2008).

    Article  Google Scholar 

  8. C.Y. Yang, T.M. Lee, Y.Z. Lu, C.W. Yang, T.S. Lui, A. Kuo, B.W. Huang, The influence of plasma-sprayed parameters on the characteristics of fluorapatite coatings. J. Med. Biol. Eng. 30 (2), 91–98 (2010).

    Google Scholar 

  9. S.C. Mojumdar, J. Kozánková, J. Chocholoušek, J. Majling, D. Fábryová, Fluoroapatite—material for medicine, growth, morphology and thermoanalytical properties. J. Therm. Anal. Cal. 78 (1), 73–82 (2004).

    Article  Google Scholar 

  10. Y. Chen, X. Mian, Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomaterials 26(11), 1205–1210 (2005)

    Article  Google Scholar 

  11. F.B. Ayed, J. Bouaziz, Sintering of tricalcium phosphate–fluorapatite composites by addition of alumina. Ceram. Int. 34 (8), 1885–1892 (2008).

    Article  Google Scholar 

  12. K.A. Bhadang, K.A. Gross, Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials 25(20), 4935–4945 (2004)

    Article  Google Scholar 

  13. Al-Noaman, N. Karpukhina, S.C.F. Rawlinson, R.G. Hill, Effect of FA on bioactivity of bioactive glass coating for titanium dental implant. Part I: Composite powder. J. Non Cryst. Solids. 364, 92–98 (2013).

    Article  ADS  Google Scholar 

  14. W.J. Dhert, C.P. Klein, J.A. Jansen, E.A. van der Velde, R.C. Vriesde, P.M. Rozing, K. de Groot, A histological and histomorphometrical investigation of fluorapatite, magnesiumwhitlockite, and hydroxylapatite plasma-sprayed coatings in goats. J. Biomed. Mater. Res 27(1), 127–138 (1993)

    Article  Google Scholar 

  15. C.P.A.T. Klein, J.G.C. Wolke, J.M.A. De Blieck-Hogervorst, K. de Groot, Calcium phosphate plasma-sprayed coatings and their stability: an in vivo study. J. Biomed. Mater. Res 28(8), 909–917 (1994)

    Article  Google Scholar 

  16. M. Wei, J.H. Evans, T. Bostrom, L. Grøndahl, Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J. Mater. Sci. Mater. Med. 14 (4), 311–320 (2003).

    Article  Google Scholar 

  17. X. Zheng, M. Huang, C. Ding, Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 21(8), 841–849 (2000)

    Article  Google Scholar 

  18. S.W.K. Kweh, K.A. Khor, P. Cheang, An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock. Biomaterials 23(3), 775–785 (2002)

    Article  Google Scholar 

  19. W. Weng, J.L. Baptista, Preparation and characterization of hydroxyapatite coatings on Ti6Al4V alloy by a sol-gel method. J. Am. Ceram. Soc. 82(1), 27–32 (1999)

    Article  Google Scholar 

  20. O. Blind, L.H. Klein, B. Dailey, L. Jordan, Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6Al-4V substrates. Dent. Mater. 21 (11), 1017–1024 (2005).

    Article  Google Scholar 

  21. M.C. Kuo, S.K. Yen, The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng. C 20(1–2), 153–160 (2002)

    Article  Google Scholar 

  22. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering. Surf. Coat. Technol 122(2–3), 73–93 (1999)

    Article  Google Scholar 

  23. W.F. Cui, L. Jin, L. Zhou, Surface characteristics and electrochemical corrosion behavior of a pre-anodized microarc oxidation coating on titanium alloy. Mater. Sci. Eng. C 33(7), 3775–3779 (2013)

    Article  Google Scholar 

  24. J.H. Ni, Y.L. Shi, F.Y. Tan, J.Z. Chen, L. Wang, Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation. Mater. Res. Bull 43(1), 45–53 (2008)

    Article  Google Scholar 

  25. X.L. Shi, Q.L. Wang, F.S. Wang, S.R. Ge, Effects of electrolytic concentration on properties of micro-arc film on Ti6Al4V alloy. Mini. Sci. Technol. 19 (2), 220–224 (2009).

    Google Scholar 

  26. J.Z. Chen, Y.L. Shi, L. Wang, F.Y. Yan, F.Q. Zhang, Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation. Mater. Lett 60(20), 2538–2543 (2006)

    Article  Google Scholar 

  27. Y. Huang, Y. Wang, C. Ning, K. Nan, Y. Han, Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation. Biomed. Mater. 2 (3), 196–201 (2007).

    Article  Google Scholar 

  28. L.T. Duarte, C. Bolfarini, S.R. Biaggio, R.C. Rocha-Filho, P.A. Nascente, Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation. Mater. Sci. Eng. C 41, 343–348 (2014)

    Article  Google Scholar 

  29. G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 27(13), 2651–2670 (2006).

    Article  Google Scholar 

  30. M. Mour, D. Das, T. Winkler, E. Hoenig, G. Mielke, M.M. Morlock, A.F. Schilling, Advances in porous biomaterials for dental and orthopaedic applications. Materials, 3, 2947–2974 (2010).

    Article  ADS  Google Scholar 

  31. M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters? Appl. Surf. Sci 256(13), 4253–4259 (2010)

    Article  ADS  Google Scholar 

  32. X.F. Xiao, R.F. Liu, Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Mater. Lett 60(21–22), 2627–2632 (2006)

    Article  Google Scholar 

  33. F.A. Akin, H. Zreiqat, S. Jordan, M.B.J. Wijesundara, Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone–tissue implants. J. Biomed. Mater. Res 57(4), 588–596 (2001)

    Article  Google Scholar 

  34. Q.M. Zhao, H.L. Yang, Z.T. Liu, X.F. Gu, C. Li, D.H. Feng, Fabrication of hydroxyapatite on pure titanium by micro-arc oxidation coupled with microwave-hydrothermal treatment. J. Mater. Sci. Mater. Med. 26 (88), 1–8 (2015).

    Article  Google Scholar 

  35. J. Wang, Y. Chao, Q. Wan, Z. Zhu, H. Yu, Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomater 5(5), 1798–1807 (2009)

    Article  Google Scholar 

  36. H.U. Cameron, I. Macnab, R.M. Pilliar, A porous metal system for joint replacement surgery. Int. J. Artif. Organs. 1(2), 104–109 (1978).

    Google Scholar 

  37. C.J. Chung, H.Y. Long, Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses. Acta Biomater 7(11), 4081–4087 (2011)

    Article  Google Scholar 

  38. T.M. Lee, K.C. Kung, K. Yuan, T.S. Lui, Effect of heat treatment on microstructures and mechanical behavior of porous Sr-Ca-P coatings on titanium. J. Alloy Compd 515(25), 68–73 (2012)

    Google Scholar 

  39. M.J. Kim, C.W. Kim, Y.J. Lim, S.J. Heo, Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J. Biomed. Mater. Res. A. 79 (4), 1023–1032 (2006).

    Article  Google Scholar 

  40. K.C. Kung, T.M. Lee, J.L. Chen, T.S. Lui, Characteristics and biological responses of novel coatings containing strontium by micro-arc oxidation. Surf. Coat. Technol 205(6), 1714–1722 (2010)

    Article  Google Scholar 

  41. Y. Nagai, C. Yamazaki, K. Ma, T. Nozaki, K. Toyamab, Yamashita, Response of osteoblast-like MG63 cells to TiO2 layer prepared by micro-arc oxidation and electric polarization. J. Eur. Ceram. Soc 32(11), 2647–2652 (2012)

    Article  Google Scholar 

  42. W.H. Song, H.S. Ryu, S.H. Hong, Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation. J. Biomed. Mater. Res. A, 88 (1), 246–254 (2009).

    Article  Google Scholar 

  43. J.Y. Martin, Z. Schwartz, T.W. Hummert, D.M. Schraub, J. Simpson, J. Lankford, D.D. Dean, D.L. Cochran, B.D. Boyan, Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J. Biomed. Mater. Res 29(3), 389–401 (1995)

    Article  Google Scholar 

  44. B.D. Boyan, R. Batzer, K. Kieswetter, Y. Liu, D.L. Cochran, S. Szmuckler-Moncler, D.D. Dean, Z. Schwartz, Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 α,25-(OH)2D3. J. Biomed. Mater. Res 39(1), 77–85 (1998)

    Article  Google Scholar 

  45. L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 25(14), 2867–2875 (2004)

    Article  Google Scholar 

  46. H. Eslami, M. Solati-Hashjin, M. Tahriri, The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Mater. Sci. Eng. C 29(4), 1387–1398 (2009)

    Article  Google Scholar 

  47. C.F. Dunne, B. Twomey, C. Kelly, J.C. Simpson, K.T. Stanton, Hydroxyapatite and fluorapatite coatings on dental screws: effects of blast coating process and biological response. J. Mater. Sci. Mater. Med. 26 (1), 1–14 (2015).

    Article  Google Scholar 

  48. G.L. Darimont, R. Cloots, E. Heinen, L. Seidel, R. Legrand, In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials 23(12), 2569–2575 (2002)

    Article  Google Scholar 

  49. K.Y. Xie, Y. Wang, Y. Zhao, L. Chang, G. Wang, Z. Chen, Y. Cao, X. Liao, E.J. Lavernia, R.Z. Valiev, B. Sarrafpour, H. Zoellner, S.P. Ringer, Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications. Mater. Sci. Eng. C 33(6), 3530–3536 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided to this study by the Chi Mei Foundation Hospital, Republic of China (Taiwan), under Contract No. 110990223, and the Ministry of Science and Technology of the Republic of China (Taiwan) under Contract No. MOST 103-2221-E-218-006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Yuan Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chien, CS., Hung, YC., Hong, TF. et al. Preparation and characterization of porous bioceramic layers on pure titanium surfaces obtained by micro-arc oxidation process. Appl. Phys. A 123, 204 (2017). https://doi.org/10.1007/s00339-017-0765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0765-0

Keywords

Navigation