Skip to main content
Log in

Inter-diffusion and its correlation with dynamical cross correlation in liquid Ce80Ni20

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We reported the inter-diffusion coefficients in liquid Ce\(_{80}\)Ni\(_{20}\) measured by the sliding cell technique. Combined with the self-diffusion data of Ni measured by quasi-elastic neutron scattering in the literature, it was found that the relationship between inter-diffusion and self-diffusion in liquid Ce\(_{80}\)Ni\(_{20}\) was strongly deviated from the standard Darken equation with an abnormally small dynamical cross correlation factor S (the so called Manning factor) in a range of 0.6–0.8, less than unity in standard systems. Through the calculated distinct diffusion coefficient and its deviation from the standard one, it was discovered that the small S value was directly originated from enhanced distinct diffusion between Ce and Ni atoms and reduced distinct diffusion between Ni and Ni atoms. Because the inter-atomic interaction was not considered in the standard liquids, the present small S factor and intrinsic distinct diffusion coefficients were believed to be resulted from the chemical interaction between Ce and Ni in the liquid. The results provide new evidence of the dynamic cross correlation in liquid diffusion, and thus shed light on the understanding of the correlation between dynamics and structure in liquid alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge University Press, Cambridge, 1984)

    Google Scholar 

  2. U. Gsele, W. Frank, A. Seeger, Appl. Phys. 23(4), 361 (1980)

    Article  ADS  Google Scholar 

  3. E. Kuphal, A. Schlachetzki, A. Pcker, Appl. Phys. 17(1), 63 (1978)

    Article  ADS  Google Scholar 

  4. J. Horbach, S.K. Das, A. Griesche, M.P. Macht, G. Frohberg, A. Meyer, Phys. Rev. B 75(17), 17430 (2007)

    Article  Google Scholar 

  5. B. Zhang, A. Griesche, A. Meyer, Phys. Rev. Lett. 104(3), 035902 (2010)

    Article  ADS  Google Scholar 

  6. J. Frenkel, Kinetic Theory of Liquids (Clarendon, Oxford, 1946)

    MATH  Google Scholar 

  7. R.A. Swalin, Acta Metall. 7(11), 736 (1959)

    Article  Google Scholar 

  8. K.S. Singwi, A. Sjlander, Phys. Rev. 119(3), 863 (1960)

    Article  ADS  Google Scholar 

  9. T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1988)

    Google Scholar 

  10. A. Meyer, EPL Web Conf. 83, 1002 (2015)

    Article  Google Scholar 

  11. A. Griesche, B. Zhang, J. Horbach, A. Meyer, Def. Diff. Forum 289–292, 705 (2009)

    Article  Google Scholar 

  12. A. Griesche, M.P. Macht, J.P. Garandet, G. Frohberg, J. Non-Cryst, Solids 336(3), 173 (2004)

    Google Scholar 

  13. T. Masaki, T. Fukazawa, S. Matsumoto, T. Itami, S. Yoda, Measurement Science and Technology 16(2), 327 (2005)

    Article  ADS  Google Scholar 

  14. Y.L. Geng, C.A. Zhu, B. Zhang, AIP Adv. 4(3), 037102 (2014)

    Article  ADS  Google Scholar 

  15. D. Heuskin, F. Kargl, A. Griesche, C. Stenzel, D. Mitschke, D. Bruer, A. Meyer, J. Phys.: Conf. Ser. 327, 012053 (2011)

    Google Scholar 

  16. H.P. Wang, B. Wei, Appl. Phys. A 95(3), 661 (2009)

    Article  ADS  Google Scholar 

  17. P. Kuhn, J. Horbach, F. Kargl, A. Meyer, T. Voigtmann, Phys. Rev. B 90(2), 024309 (2014)

    Article  ADS  Google Scholar 

  18. L.S. Darken, Trans. AIME 175, 184 (1948)

    Google Scholar 

  19. Y.A. Chang, W.A. Oates, Materials Thermodynamics (Wiley, New York, 2010)

    Google Scholar 

  20. J.R. Manning, Phys. Rev. 124(2), 470 (1961)

    Article  ADS  Google Scholar 

  21. H. Mehrer, Diffusion in Solids (Springer, Berlin, 2009)

    Google Scholar 

  22. W. Marbach, H.G. Hertz, H. Weingrtner, Z. Phys. Chem. 189(Part 1), 63 (1995)

    Article  Google Scholar 

  23. T. Voigtmann, A. Meyer, D. Holland-Moritz, S. Stber, T. Hansen, T. Unruh, Europhys. Lett. 82(6), 66001 (2008)

    Article  ADS  Google Scholar 

  24. H.J.V. Tyrrell, K.R. Harris, Diffusion in Liquids: A Theoretical and Experimental Study (Butterworth-Heinemann, London, 1984)

    Google Scholar 

  25. L. Onsager, Phys. Rev. 37(4), 405 (1931)

    Article  ADS  Google Scholar 

  26. L. Onsager, Phys. Rev. 38(12), 2265 (1931)

    Article  ADS  Google Scholar 

  27. D.G. Miller, J. Phys. Chem. 90(8), 1509 (1986)

    Article  Google Scholar 

  28. D.D. Fitts, Nonequilibrium Thermodynamics (McGraw-Hill, New York, 1962)

    Google Scholar 

  29. R. Zwanzig, Annu. Rev. Phys. Chem. 16(1), 67 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  30. H.L. Friedman, R. Mills, J. Solut. Chem. 15(1), 69 (1986)

    Article  Google Scholar 

  31. R. Mills, R. Malhotra, L.A. Woolf, D.G. Miller, J. Phys. Chem. 98(21), 5565 (1994)

    Article  Google Scholar 

  32. A. Cadien, Q.Y. Hu, Y. Meng, Y.Q. Cheng, M.W. Chen, J.F. Shu, H.K. Mao, H.W. Sheng, Phys. Rev. Lett. 110(12), 125503 (2013)

    Article  ADS  Google Scholar 

  33. B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang, A.L. Greer, Phys. Rev. Lett. 94(20), 205502 (2005)

    Article  ADS  Google Scholar 

  34. S.M. Chathoth, M.M. Koza, A. Meyer, Mater. Chem. Phys. 136(2–3), 296 (2012)

    Article  Google Scholar 

  35. W. Xiong, Y. Du, X. Lu, J.C. Schuster, H. Chen, Intermetallics 15(11), 1401 (2007)

    Article  Google Scholar 

  36. F. Kargl, E. Sondermann, H. Weis, A. Meyer, High Temp. High Press. 2(42), 3 (2013)

    Google Scholar 

  37. A. Griesche, F. Garcia-Moreno, M.P. Macht, G. Frohberg, Mater. Sci. Forum 508, 567 (2006)

    Article  Google Scholar 

  38. A. Griesche, M.P. Macht, G. Frohberg, Def. Diff. Forum 266, 101 (2007)

    Article  Google Scholar 

  39. R. Mills, H.G. Hertz, J. Phys. Chem. 84(2), 220 (1980)

    Article  Google Scholar 

  40. H.L. Friedman, R. Mills, J. Solut. Chem. 10(6), 395 (1981)

    Article  Google Scholar 

  41. H.G. Hertz, H. Leiter, Z. Phys, Chem. 133(1), 45 (1982)

    Google Scholar 

  42. J. Brillo, S.M. Chathoth, M.M. Koza, A. Meyer, Appl. Phys. Lett. 93(12), 121905 (2008)

    Article  ADS  Google Scholar 

  43. K.L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, New York, 2011)

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 51171055, and No. 51322103), National Program on Key Basic Research Project (973 Program, Grant No. 2015CB856800), National Key Research and Development Project (No. 2016YFB0300500) and the Fundamental Research Funds for the Central Universities in China (No. JZ2016HGPB0671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J.L., Zhong, L.X., Zhu, C.A. et al. Inter-diffusion and its correlation with dynamical cross correlation in liquid Ce80Ni20 . Appl. Phys. A 123, 176 (2017). https://doi.org/10.1007/s00339-017-0759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0759-y

Mathematics Subject Classification

Navigation