Skip to main content

Novel structure, morphology, and optical property of Mg-doped ZnO nanostructures fabricated by PCVD method

Abstract

Mg-doped ZnO nanostructures with different growth temperature and Mg contents have been successfully fabricated on Si (111) substrates via physical chemical vapor deposition (PCVD) method. The influences of the growth temperature and Mg contents on the nanostructure, morphologies, and crystallinities were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectra. The SEM results show that it is beneficial to grow regular ZnMgO nanorods with the growth temperature of 750 °C and Zn/Mg molar ratio of 50:1, respectively. XRD results indicate that the nanorods possess the preferential orientation along the c-axis with the best crystals. The nanorod arrays, dendritic, and like-caltrop nanostructure were achieved at various growth temperature and Mg contents, respectively. The photoluminescence (PL) spectra show that the UV emissions present the obvious blueshift owing to the increasing growth temperature and Mg contents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    W.I. Park, G.C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 16, 87–90 (2004)

    Article  Google Scholar 

  2. 2.

    S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)

    ADS  Article  Google Scholar 

  3. 3.

    C.J. Pan, H.C. Hsu, H.M. Cheng, C.Y. Wu, W.F. Hsieh, Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires. J. Solid State Chem. 180, 1188–1192 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    L.T. Chang, C.Y. Wang, J.S. Tang, T.X. Nie, W.J. Jiang, C.P. Chu, S. Arafin, L. He, M. Afsal, L.J. Chen, K.L. Wang, Electric-field control of ferromagnetism in Mn-doped ZnO nanowires. Nano Lett. 14, 1823–1829 (2014)

    ADS  Article  Google Scholar 

  5. 5.

    X.T. Zhou, T.H. Lin, Y.H. Liu, C.X. Wu, X.Y. Zeng, D. Jiang, Y.A. Zhang, T.L. Guo, Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation. ACS Appl. Mater. Interfaces 5, 10067–10073 (2013)

    Article  Google Scholar 

  6. 6.

    H.M. Chiu, Y.T. Chang, W.W. Wu, J.M. Wu, Synthesis and characterization of one-dimensional Ag-doped ZnO/Ga-doped ZnO coaxial nanostructure diodes. ACS Appl. Mater. Interfaces 6, 5183–5191 (2014)

    Article  Google Scholar 

  7. 7.

    E. Diler, S. Rioual, B. Lescop, D. Thierry, B. Rouvellou, Stability of ZnMgO oxide in a weak alkaline solution. Thin Solid Films 520, 2819–2823 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    G. Tabares, A. Hierro, B. Vinter, J.M. Chauveau, Polarization-sensitive Schottky photodiodes based on a-plane ZnO/ZnMgO multiple quantum-wells. Appl. Phys. Lett. 99, 071108 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    W.S. Choi, J.G. Yoon, Optical characterization of band gap graded ZnMgO films. Solid State Commun. 152, 345–348 (2012)

    ADS  Article  Google Scholar 

  10. 10.

    R.R. Zhao, X.Q. Wei, Y.J. Wang, X.J. Xu, Annealing effects on structural and optical properties of ZnMgO films grown by RF magnetron sputtering. J. Mater. Sci. Mater. Electron 24, 4290–4295 (2013)

    Article  Google Scholar 

  11. 11.

    A. Bera, D. Basak, Manifestation of spin–spin interaction between oxygen vacancy and magnesium in ZnMgO nanorods by electron paramagnetic resonance studies. Appl. Phys. Lett. 99, 194101 (2011)

    ADS  Article  Google Scholar 

  12. 12.

    P. Shimpi, Y. Ding, E. Suarez, J. Ayers, P.X. Gao, Annealing induced nanostructure and photoluminescence property evolution in solution-processed Mg-alloyed ZnO nanowires. Appl. Phys. Lett. 97, 103104 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    R. Yousefi, B. Kamaluddin, Fabrication and characterization of ZnO and ZnMgO nanostructures grown using a ZnO/ZnMgO compound as the source material. Appl. Surf. Sci. 256, 329–334 (2009)

    ADS  Article  Google Scholar 

  14. 14.

    R. Yousefi, M.R. Muhamad, Effects of gold catalysts and thermal evaporation method modifications on the growth process of Zn1−x Mg x O nanowires. J. Solid State Chem. 183, 1733–1739 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    Y.W. Heo, M. Kaufman, K. Pruessner, D.P. Norton, F. Renb, M.F. Chisholm, P.H. Fleming, Optical properties of Zn1xMgxO nanorods using catalysis-driven molecular beam epitaxy. Solid State Electron 47, 2269–2273 (2003)

    ADS  Article  Google Scholar 

  16. 16.

    R. Kling, C. Kirchner, T. Gruber, F. Reuss, A. Waag, Analysis of ZnO and ZnMgO nanopillars grown by self-organization. Nanotechnology 15, 1043–1046 (2004)

    ADS  Article  Google Scholar 

  17. 17.

    R.C. Boutwell, M. Wei, W.V. Schoenfeld, The effect of substrate temperature and source flux on cubic ZnMgO UV sensors grown by plasma-enhanced molecular beam epitaxy. Appl. Surf. Sci. 284, 254–257 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    A. Kaminska, A. Duzynska, M. Nowakowska, A. Suchocki, T.A. Wassner, B. Laumer, M. Eickhoff, Luminescent properties of ZnO and ZnMgO epitaxial layers under high hydrostatic pressure. J. Alloys Compd. 672, 125–130 (2016)

    Article  Google Scholar 

  19. 19.

    Y. Ke, J. Berry, P. Parilla, A. Zakutayev, R.O. Hayre, D. Ginley, The origin of electrical property deterioration with increasing Mg concentration in ZnMgO:Ga. Thin Solid Films 520, 3697–3702 (2012)

    ADS  Article  Google Scholar 

  20. 20.

    S.Y. Hua, W.C. Chou, Y.H. Weng, Effects of magnesium contents in ZnMgO ternary alloys grown by molecular beam epitaxy. J. Alloys Compd. 636, 81–84 (2015)

    Article  Google Scholar 

  21. 21.

    M. Caglar, Y. Caglar, S. Ilican, Investigation of the effect of Mg doping for improvements of optical and electrical properties. Phys. B 485, 6–13 (2016)

    ADS  Article  Google Scholar 

  22. 22.

    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    ADS  Article  Google Scholar 

  23. 23.

    R.R. Zhao, X.Q. Wei, M. Ding, X.J. Xu, Fabrication and optical properties of Mg-Doped ZnO nanorods by chemical vapor deposition, Sci. Adv. Mater. 6, 500–504 (2014)

    Article  Google Scholar 

  24. 24.

    N. Guo, X.Q. Wei, R.R. Zhao, X.J. Xu, Preparation and optical properties of Mg-doped ZnO nanorods. Appl. Surf. Sci. 317, 400–404 (2014)

    ADS  Article  Google Scholar 

  25. 25.

    T. Rakshit, I. Manna, S.K. Ray, Temperature-dependent photoluminescence properties of ZnO/Zn1-xMgxO multilayers grown by pulsed laser deposition. J. Lumin. 136, 285–290 (2013)

    Article  Google Scholar 

  26. 26.

    S.J. Chen, Y.C. Liu, C.L. Shao, R. Mu, Y.M. Lu, J.Y. Zhang, D.Z. Shen, X.W. Fan, Structural and optical properties of uniform ZnO nanosheets. Adv. Mater. 17, 586–590 (2005)

    ADS  Article  Google Scholar 

  27. 27.

    Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, D.P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689–1691 (2003)

    ADS  Article  Google Scholar 

  28. 28.

    T.C. Damen, S.P.S. Porto, B. Tell, Raman effect in zinc oxide. Phys. Rev. 142, 570–574 (1966)

    ADS  Article  Google Scholar 

  29. 29.

    M. Gusatti, C.E. Campos, J.A. Rosario, D.A. Souza, N.C. Kuhnen, H.G. Riella, The rapid preparation of ZnO nanorods via low-temperatures solochemical method. J. Nanosci. Nanotechnol. 11, 5187–5192 (2011)

    Article  Google Scholar 

  30. 30.

    X.H. He, H. Yang, Z.W. Chen, S.Y.L. Stephen, Effect of Co-doping content on hydrothermal derived ZnO array films. Phys. B 407, 2895–2899 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    J. Zeng, S. Wang, P. Tao, J.C. Xu, Luminescence properties of nanostructure MgZnO prepared by thermal oxidation. J. Alloys Compd. 476, 60–63 (2009)

    Article  Google Scholar 

  32. 32.

    P. Zhang, L. Chen, M. Zi, Z.W. Qiu, H.B. Gong, B.Q. Cao, Zn1–xMgxO (0 ≤ x ≤ 0.05) nanowalls grown on catalyst-free sapphire substrates by high-pressure PLD and their photoluminescence properties. Appl. Phys. A Mater. 111, (2013) 1119–1124

    ADS  Article  Google Scholar 

  33. 33.

    A.K. Zak, R. Yousefi, W.H. Abd Majid, M.R. Muhamad, Facile Synthesis and X-ray Peak Broadening Studies of Zn1-xMgxO Nanopaiticles. Ceram. Int. 38, (2012) 2059–2064

    Article  Google Scholar 

  34. 34.

    H. Liu, Study on fabrication and property of Mg doped ZnO thin film and nanostructure, Thesis of the Degree of Master, Jinan, 2010

  35. 35.

    Y.T. Zhang, G.T. Du, D.L. Liu, X.Q. Wang, Y. Ma, Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions. J. Cryst. Growth 243, 439–443 (2002)

    ADS  Article  Google Scholar 

  36. 36.

    L. Zhao, X. Li, J. Zhao, Fabrication, characterization and photocatalytic activity of cubic-like ZnMn2O4. Appl. Surf. Sci. 268, 274–277 (2013)

    ADS  Article  Google Scholar 

  37. 37.

    M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000)

    ADS  Article  Google Scholar 

  38. 38.

    D.K. Aswal, K.P. Muthe, S. Tawde, S. Chodhury, N. Bagkar, A. Singh, S.K. Gupta, J.V. Yakhmi, XPS and AFM investigations of annealing induced surface modifications of MgO single crystals. J. Cryst. Growth 236, 661 (2002)

    ADS  Article  Google Scholar 

  39. 39.

    H.H. Huang, S.Y. Chu, P.C. Kao, Y.C. Chen, Improvement of highly efficient organic light-emitting diodes using Mg-doped ZnO buffer layers. Thin Solid Films 516, 5664–5668 (2008)

    ADS  Article  Google Scholar 

  40. 40.

    N. Samir, D.S. Eissa, N.K. Allam, Self-assembled growth of vertically aligned ZnO nanorods for light sensing applications. Mater. Lett. 137, 45–48 (2014)

    Article  Google Scholar 

  41. 41.

    R. Yousefi, F. Jamali-Sheini, M.R. Muhamad, M.A. More, Characterization and field emission properties of ZnMgO nanowires fabricated by thermal evaporation process, Solid State Sci. 12, 1088–1093 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by the National Natural Science Foundation of China (Grant No. 51672109, Grant No. 21505050), the Shandong Provincial Natural Science Foundation (ZR2013AM008), and Encouragement Foundation for Excellent Middle-aged and Young Scientist of Shandong Province (Grant No. BS2014CL012, ZR2016JL015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. Q. Wei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.L., Wei, X.Q., Guo, N. et al. Novel structure, morphology, and optical property of Mg-doped ZnO nanostructures fabricated by PCVD method. Appl. Phys. A 123, 127 (2017). https://doi.org/10.1007/s00339-017-0758-z

Download citation

Keywords

  • Growth Temperature
  • Visible Emission
  • Hexagonal Wurtzite Structure
  • ZnMgO Thin Film
  • Average Localization Energy