Skip to main content
Log in

Molecular dynamics simulation of nanotribology properties of CuZr metallic glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of scratch depth, scratch speed, and alloy composition on the mechanical deformation and nanotribology properties of CuZr metallic glasses are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories, slip vectors, friction force, normal force, and friction coefficient. The simulation results show that a few shear transformation zones independently develop at the contact area between the probe tip and the film. Pileup occurs in the nanoscratch process but not during nanoindentation at a depth of 2.4 nm. There are two areas on the surface where the atoms have high slip vector values during nanoscratching. These areas form due to the removal of atoms that piled up around the probe tip and those behind the probe tip, respectively. Both the friction force and the normal force increase with increasing scratch depth and scratch speed. Friction coefficients decrease with increasing scratch depth, scratch speed, and Zr content in films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Telford, Mater. Today 7, 36 (2004)

    Article  Google Scholar 

  2. A.I. Salimon, M.F. Ashby, Y. Brechet, A.L. Greer, Mater. Sci. Eng. A 375, 385 (2004)

    Article  Google Scholar 

  3. A. Peker, W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993)

    Article  ADS  Google Scholar 

  4. J. Schroers, W.L. Johnson, Phys. Rev. Lett. 93, 255506 (2004)

    Article  ADS  Google Scholar 

  5. R.D. Conner, Y. Li, W.D. Nix, W.L. Johnson, Acta Mater. 52, 2429 (2004)

    Article  Google Scholar 

  6. W.L. Johnson, J. Miner. Metall. Mater. Soc. 54, 40 (2002)

    Article  ADS  Google Scholar 

  7. C.L. Chiang, J.P. Chu, F.X. Liu, P.K. Liaw, R.A. Buchanan, Appl. Phys. Lett. 88, 131902 (2006)

    Article  ADS  Google Scholar 

  8. J. Schroers, Processing of bulk metallic glass. Adv. Mater. 22, 1566 (2010)

    Article  Google Scholar 

  9. G. Kumar, H.X. Tang, J. Schroers, Nature 457, 868 (2009)

    Article  ADS  Google Scholar 

  10. S.N. Sambandam, S. Bhansali, V.R. Bhethanabotla, Mater. Res. Soc. Symp. Proc. 806, MM8 (2004)

    Google Scholar 

  11. Y. Saotome, Y. Noguchi, T. Zhang, A. Inoue, Mater. Sci. Eng. A 375–377, 389 (2004)

    Article  Google Scholar 

  12. S.R. Ning, J. Gao, Y.G. Wang, Adv. Mater. Res. 129–131, 1366 (2010)

    Article  Google Scholar 

  13. V. Keryvin, R. Crosnier, R. Laniel, V.H. Hoang, J.C. Sangleboeuf, J. Phys. D Appl. Phys. 41, 074029 (2008)

    Article  Google Scholar 

  14. J. Sort, N.V. Steenberge, A. Gimazov, A. Concustell, S. Suriñach, A. Gebert, J. Eckert, M.D. Baró, Open Mater. Sci. J. 2, 1 (2008)

    Article  Google Scholar 

  15. Y. Huang, Y.L. Chiu, J. Shen, Y. Sun, J.J.J. Chen, Intermetallics 18, 1056 (2010)

    Article  Google Scholar 

  16. K.W. Chen, J.F. Lin, Int. J. Plast. 26, 1645 (2010)

    Article  Google Scholar 

  17. D. Tranchida, S. Piccarolo, R.A.C. Deblieck, Meas. Sci. Technol. 17, 2630 (2016)

    Article  ADS  Google Scholar 

  18. C.D. Wu, T.H. Fang, C.C. Wu, J. Appl. Phys. 117(1), 014307 (2015)

    Article  ADS  Google Scholar 

  19. C.D. Wu, Appl. Surf. Sci. 343, 153 (2015)

    Article  ADS  Google Scholar 

  20. C.D. Wu, T.H. Fang, C.Y. Chen, C.I. Weng, Appl. Surf. Sci. 292, 500 (2014)

    Article  ADS  Google Scholar 

  21. C.D. Wu, T.H. Fang, J.F. Lin, Mater. Lett. 80, 59 (2012)

    Article  Google Scholar 

  22. C.D. Wu, T.H. Fang, J.F. Lin, Micron 44, 410 (2013)

    Article  Google Scholar 

  23. C.D. Wu, T.H. Fang, T.T. Wu, Polymer 53, 857 (2012)

    Article  Google Scholar 

  24. F. Li, X.J. Liu, Z.P. Lu, Comput. Mater. Sci. 85, 147 (2014)

    Article  Google Scholar 

  25. S.S. Dalgic, M. Celtek, EPJ Web Conf. 15, 03008 (2011)

    Article  Google Scholar 

  26. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)

    MATH  Google Scholar 

  27. A.L. Greer, Y.Q. Cheng, E. Ma, Mater. Sci. Eng. R74, 71 (2013)

    Article  Google Scholar 

  28. M.Z. Ma, H.T. Zong, H.Y. Wang, W.G. Zhang, A.J. Song, S.X. Liang, Q. Wang, X.Y. Zhang, Q. Jing, G. Li, R.P. Liu, Mater. Lett. 62, 4348 (2008)

    Article  Google Scholar 

  29. E. Fleury, S.M. Lee, H.S. Ahn, W.T. Kid, D.H. Kim, Mater. Sci. Eng., A 375–377, 276 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of Taiwan under Grants MOST 104-2221-E-033-062-MY2 and MOST NSC 104-2622-E-033-006-CC3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Da Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CD. Molecular dynamics simulation of nanotribology properties of CuZr metallic glasses. Appl. Phys. A 122, 486 (2016). https://doi.org/10.1007/s00339-016-9998-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9998-6

Keywords

Navigation