Applied Physics A

, 122:445 | Cite as

A model for direct laser interference patterning of ZnO:Al - predicting possible sample topographies to optimize light trapping in thin-film silicon solar cells

  • Tobias DyckEmail author
  • Stefan Haas


We present a novel approach to obtaining a quick prediction of a sample’s topography after the treatment with direct laser interference patterning (DLIP) . The underlying model uses the parameters of the experimental setup as input, calculates the laser intensity distribution in the interference volume and determines the corresponding heat intake into the material as well as the subsequent heat diffusion within the material. The resulting heat distribution is used to determine the topography of the sample after the DLIP treatment . This output topography is in good agreement with corresponding experiments. The model can be applied in optimization algorithms in which a sample topography needs to be engineered in order to suit the needs of a given device. A prominent example for such an application is the optimization of the light scattering properties of the textured interfaces in a solar cell.


Laser Process Heat Diffusion Laser Pulse Duration Threshold Fluence Spatial Periodicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors want to thank Gunnar Schöpe, Andreas Bauer and Pascal Foucart for technical assistance, Bugra Turan, Nicolas Sommer and Uwe Rau for fruitful discussions and the European Union as well as the state of North Rhine-Westphalia for financial funding (Project LATEXT EN3003/B).


  1. 1.
    S. Ring, B. Stannowski, F. Fink, R. Schlatmann, Micro gratings written in ZnO:Al thin films using picosecond UV-laser interference patterning. Phys. Status Solidi RRL 7, 635–638 (2013) ADSCrossRefGoogle Scholar
  2. 2.
    S. Ring, S. Neubert, C. Schultz, S.S. Schmidt, F. Ruske, B. Stannowski, F. Fink, R. Schlatmann, Light trapping for a-Si:H/c-Si:H tandem solar cells using direct pulsed laser interference texturing. Phys. Status Solidi RRL 9(1), 3640 (2014)Google Scholar
  3. 3.
    S. Eckhardt, C. Sachse, A.F. Lasagni, Light management in transparent conducting oxides by direct fabrication of periodic surface arrays. Phys. Proc. 41, 552–557 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, A.F. Lasagni, Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning. Adv. Mater. 24(7), 906–910 (2012)CrossRefGoogle Scholar
  5. 5.
    D.Y. Kim, S.K. Tripathy, L. Li, J. Kumar, Laserinduced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett. 66(10), 1166–1168 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    F. Mücklich, A. Lasagni, C. Daniel, Laser interference metallurgy—periodic surface patterning and formation of intermetallics. Intermetallics 13, 437–442 (2005)CrossRefGoogle Scholar
  7. 7.
    A. Lasagni, C. Holzapfel, F. Mücklich, Periodic pattern formation of intermetallic phases with long range order by laser interference metallurgy. Adv. Eng. Mater. 7(6), 487–492 (2005)CrossRefGoogle Scholar
  8. 8.
    A. Lasagni, F. Mücklich, M. Nejati, R. Clasen, Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers. Adv. Eng. Mater. 8, 580–584 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Lasagni, T. Roch, M. Bieda, D. Benke, E. Beyer, High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution. In: Proc. SPIE 8968, Laser-based Micro- and Nanoprocessing VIII. (2014), p. 89680A. doi:  10.1117/12.2041215
  10. 10.
    S. Beckemper, Generation of periodic micro- and nano-structures by parameter-controlled three-beam laser interference technique. J. Laser Micro/Nanoeng. 6(1), 49–53 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Huang, S. Beckemper, A. Gillner, K. Wang, Tunable surface texturing by polarization-controlled three-beam interference. J. Micromech. Microeng. 20(9), 095004 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Nakata, K. Murakawa, K. Sonoda, K. Momoo, N. Miyanaga, Design of interference using coherent beams configured as a six-sided pyramid. Appl. Opt. 51(21), 5004–5010 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    T. Knüttel, S. Bergfeld, S. Haas, Laser texturing of surfaces in thin-film silicon photovoltaics—a comparison of potential processes. J. Laser Micro/Nanoeng. 8(3), 222–229 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J. Appl. Phys. 101(7), 074903 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J.L. Stay, T.K. Gaylord, Three-beam-interference lithography: contrast and crystallography. Appl. Opt. 47, 3221–3230 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    C. Gagn, DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    R. Poprawe, Lasertechnik für die Fertigung, ch. 4 (Springer, New York, 2005), p. 41 Google Scholar
  18. 18.
    D. Bäuerle, Laser Processing and Chemistry, ch. 2 (Springer, New York, 2011), pp. 19–24CrossRefGoogle Scholar
  19. 19.
    K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells, ch. 1 (Springer, New York, 2007), p. 6Google Scholar
  20. 20.
    D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO. J. Appl. Phys. 105(3), 034908 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    A. Sarkar, S. Ghosh, S. Chaudhuri, A. Pal, Studies on electron transport properties and the Burstein–Moss shift in indium-doped ZnO films. Thin Solid Films 204(2), 255–264 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7(5), 196–198 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    D.F. Anthrop, A.W. Searcy, Sublimation and thermodynamic properties of zinc oxide. J. Phys. Chem. 68(8), 2335–2342 (1964)CrossRefGoogle Scholar
  24. 24.
    C. Chan, J. Mazumder, M. Chen, Three-dimensional axisymmetric model for convection in laser-melted pools. Mater. Sci. Technol. 3(4), 306–311 (1987)CrossRefGoogle Scholar
  25. 25.
    R. Poprawe, Lasertechnik für die Fertigung, ch. 11 (Springer, New York, 2005), p. 176Google Scholar
  26. 26.
    D. Bäuerle, Laser Processing and Chemistry, ch. 10 (Springer, New York, 2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.IEK5 - PhotovoltaikForschungszentrum Jülich GmbHJülichGermany
  2. 2.4JET microtech GmbH & Co.KGAlsdorfGermany

Personalised recommendations